DeepDTI:使用深度学习的高保真六方向扩散张量成像
DeepDTI:使用深度学习实现高保真六方向扩散张量成像 研究背景及研究动机 扩散张量磁共振成像(Diffusion Tensor Imaging, DTI)在活体人脑组织微结构和结构连接性映射方面具有无可比拟的优势。然而,传统的DTI技术因为角度采样的要求导致扫描时间过长,制约了其在常规临床实践和大规模研究中的应用。为了克服这一瓶颈,研究者们开发了一种新的DTI处理框架,称为DeepDTI,通过数据驱动的监督深度学习最小化DTI的数据需求。本文的目的在于展示如何使用DeepDTI显著减少DTI的采样数据量,从而实现更快的扫描速度,同时保持高质量的成像结果。 论文来源 这篇论文的主要作者包括Qiyuan Tian, Berkin Bilgic, Qiuyun Fan, Congyu Liao...