Increasing Cellular NAD+ Protects Hepatocytes Against Palmitate-Induced Lipotoxicity

NAD+ Protects Hepatocytes Against Palmitate-Induced Lipotoxicity by Preventing PARP-1 Inhibition and mTORC1-p300 Pathway Activation Research Background Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a spectrum of liver diseases ranging from simple steatosis to steatohepatitis, fibrosis/cirrhosis, and even hepatocellular ca...

O-GlcNAcylation Regulates Tyrosine Hydroxylase Serine 40 Phosphorylation and L-Dopa Levels

O-GlcNAcylation Regulates Tyrosine Hydroxylase Serine 40 Phosphorylation and L-DOPA Levels Research Background In the nervous system, dopamine is a key neurotransmitter, and the rate-limiting enzyme in its synthesis pathway is tyrosine hydroxylase (TH). The activity of TH is regulated by various post-translational modifications (PTMs), among which ...

Modeling Ocular Surface Ion and Water Transport by Generation of Lipid- and Mucin-Producing Human Meibomian Gland and Conjunctival Epithelial Cells

Modeling of Ion and Water Transport on the Human Ocular Surface Background Introduction The ocular surface plays a crucial role in human physiology and diseases, especially the stability and composition of the tear film, which directly impact ocular surface health. The tear film consists of three layers: an outer lipid layer (secreted by the meibom...

Senescent Myoblasts Exhibit an Altered Exometabolome Linked to Senescence-Associated Secretory Phenotype Signaling

Research Report on Changes in the Metabolome of Senescent Myoblasts Research Background As age increases, the function of skeletal muscle gradually deteriorates, a phenomenon closely related to the senescence of muscle stem cells (satellite cells). Satellite cells play a key role in muscle injury repair. However, during the aging process, the funct...

Sulforaphane Treatment Mimics Contractile Activity-Induced Mitochondrial Adaptations in Muscle Myotubes

Sulforaphane Mimics Contractile Activity-Induced Mitochondrial Adaptations in Muscle Research Background Mitochondria are central regulators of skeletal muscle health, acting as the cell’s power plants. The function and quality of mitochondria directly impact muscle health. Exercise has been widely proven to be an effective means of enhancing mitoc...

RFC4 Confers Radioresistance of Esophagus Squamous Cell Carcinoma through Regulating DNA Damage Response

New Discovery in the Mechanism of Radioresistance in Esophageal Squamous Cell Carcinoma: The Role of the RFC4 Gene Academic Background Esophageal squamous cell carcinoma (ESCC) is one of the most common gastrointestinal malignancies in China, and radiotherapy is a crucial treatment modality. However, radioresistance in tumor cells is a major cause ...

Novel Endocytosis Inhibitors Block Entry of HIV-1 Tat into Neural Cells

Novel Endocytosis Inhibitors Block HIV-1 Tat Protein Entry into Neural Cells Academic Background HIV-1 (human immunodeficiency virus type 1) infection not only leads to immune system exhaustion but is also closely associated with HIV-associated neurocognitive disorders (HAND). Although combined antiretroviral therapy (cART) has significantly improv...

p300 maintains primordial follicle activation by repressing VEGFA transcription

Mechanism Study of p300 Maintaining Primordial Follicle Activation by Inhibiting VEGFA Transcription Academic Background In the female reproductive system, primordial follicles (PFs) are the earliest formed follicles in the ovary, remaining dormant and awaiting activation to enter the growth phase. The activation of primordial follicles is a key fa...

Gut-Kidney Interaction Reinforces Dapagliflozin-Mediated Alleviation in Diabetic Nephropathy

Mechanism Study of Dapagliflozin Improving Diabetic Nephropathy via the Gut-Kidney Axis Academic Background Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes, with approximately 40% of individuals with type 1 or type 2 diabetes developing DN in the advanced stages of the disease. Although clinical managemen...

Proteomic Analysis Reveals Distinct Cerebrospinal Fluid Signatures Across Genetic Frontotemporal Dementia Subtypes

Academic Background Frontotemporal Dementia (FTD) is a group of progressive neurodegenerative diseases characterized primarily by behavioral changes, language impairment, or motor dysfunction. Although the incidence of FTD is lower than that of Alzheimer’s Disease (AD), it remains one of the leading causes of early-onset dementia. The molecular bas...