時間的知識グラフと医療オントロジーによる将来の障害の予測

未来の病気予測:時間的知識グラフと医療オントロジーの融合 電子健康記録(Electronic Health Records, EHRs)は、現代の医療機関にとって不可欠なツールです。これらは患者の詳細な健康履歴を記録し、人口統計データ、薬物、実験結果、治療計画を含んでいます。これらのデータは、医療サービス間の連携や調整を改善し、医療提供者が健康の傾向を発見し、データに基づいた決定を下すのを助け、患者の全体的なケアの質を向上させることができます。しかし、EHRsに保存されているデータの大部分は非構造化であり、特に臨床医が記述する自由形式の患者健康状態のテキストデータは、情報の抽出と有効な利用に大きな課題をもたらします。 この課題に対処するため、多くの研究が自然言語処理(Natural Lang...

知識グラフに基づく推薦を用いた生物医学的関係抽出

医学関係抽出と知識グラフ推薦を結合した研究報告 背景説明 医学分野において、文献の爆発的な増加により、研究者は自身の専門分野の最新の進展を追跡することが難しくなっています。自然言語処理(NLP)分野から見ると、進化する自動化ツールは非構造化テキストから関連情報を識別および抽出するのを助け、このタスクは関係抽出(Relation Extraction、RE)と呼ばれます。REの主要な目標はテキストから医学的な実体間の関係を抽出して分類し、生物医学プロセスの理解を深めることです。 現在、大多数の最先端の医学REシステムは深層学習手法を使用しており、主に同種の実体間の関係(例:遺伝子と薬剤など)を対象としています。しかし、これらのシステムは大部分がテキストから直接抽出した情報に限られており、専門分...

知識強化型グラフトピック変換機による説明可能な生物医学テキスト要約

知識強化型グラフトピック変圧器の説明可能な生物医学テキスト要約への応用 研究背景 生物医学の文献発表量が増加し続けているため、自動生物医学テキスト要約タスクの重要性が高まっています。2021年にはPubMedデータベースだけで1,767,637本の論文が発表されました。既存の事前学習言語モデル(Pre-trained Language Models、PLMs)を用いた要約方法は性能を向上させていますが、特定の分野の知識の捕捉や結果の説明可能性において顕著な制限があります。これにより、生成された要約が一貫性に欠け、冗長な文章や重要な分野知識の欠落を含む可能性があります。さらに、変圧器モデルのブラックボックス特性はユーザーが要約生成の理由や方法を理解するのを困難にするため、生物医学テキスト要約に...

診断予測のための段階認識階層型注意関係網

診断予測における階層的注意関係ネットワークの応用 近年、電子健康記録(Electronic Health Records、略してEHR)は医療意思決定の向上やオンラインでの病気の検出と監視において極めて価値があります。同時に、深層学習に基づく方法はEHRを利用した健康リスク予測や診断予測で大きな成功を収めました。しかし、深層学習モデルには通常、大量のデータが必要であり、その理由はパラメータの膨大な数にあります。さらに、EHRデータには多くの希少な医療コードが存在し、これが臨床応用に大きな課題をもたらします。このため、一部の研究では医療オントロジーを用いて予測性能を強化し、解釈可能な予測結果を提供することが提案されています。しかし、これらの医療オントロジーは通常、規模が小さく、粒度が粗いため、...

シュワン細胞由来のプレイオトロフィンが線維芽細胞の増殖と神経線維腫における過剰なコラーゲン堆積を刺激する

本文では、神経線維腫症1型(neurofibromatosis type 1, NF1)に関連する叢状神経線維腫(plexiform neurofibroma, PNF)におけるシュワン細胞と線維芽細胞の相互作用を探求しています。研究背景は、NF1の高発生率に基づいており、全世界で約1/3000の新生児に影響を及ぼしており、一連の特有な臨床症状を伴います。PNFはNF1患者において一般的な周囲神経鞘腫であり、約50%の患者がこの病にかかり、生活の質に大きな影響を与えます。数十年にわたる研究にもかかわらず、PNFは依然として治癒が困難です。現在の治療法は主にNF1関連のシュワン細胞に対して行われており、一部の臨床効果が得られています。しかし、多くの治療法、例えば選択的MEK阻害剤Selumet...

ロミデプシンがDDIT4-mTORC1経路を通じて食道扁平上皮癌の活性を示す

Romidepsin は DDIT4-mTORC1 経路を通じて食道扁平上皮がんに対する抗腫瘍活性を示す 食道扁平上皮がん(esophageal squamous cell carcinoma, ESCC)は、世界で最も一般的な悪性腫瘍の一つであり、高発症率および高死亡率を持ちます。現在の治療オプションが限られているため、新しい効果的な治療薬の開発が急務となっています。本研究では、研究者は高スループット薬物スクリーニング(high-throughput drug screening, HTS)技術を用いてESCC細胞株をスクリーニングし、ヒストン脱アセチル化酵素阻害剤ロミデプシン(Romidepsin)がESCC細胞の増殖抑制、アポトーシス誘導、および細胞周期の停止に顕著な効果があることを発...

複数波長の励起蛍光分光法を用いた蛍光団のロバストな推定のための明示的なベースラインモデル

研究背景 蛍光スペクトルは、蛍光物質(蛍光団)の識別と定量に広く使用される方法です。しかし、材料に他の蛍光団(基線蛍光団)が含まれている場合、対象の蛍光団を定量化することが難しくなります。特に基線の発光スペクトルが明確に定義されておらず、対象の蛍光団の発光スペクトルと重なる場合に問題となります。これらの蛍光物質を正確に区別して定量化するために、研究者たちは多波長励起蛍光スペクトルに基づく新しい方法を提案しました。この研究の主な目標は、基線蛍光干渉の問題を解決し、事前の仮定なしに堅牢な推定アルゴリズムを提供することです。 論文の出典 この論文は「An Explicit Estimated Baseline Model for Robust Estimation of Fluorophores ...

MRIからの神経膠腫におけるIDH状態予測のための多階層特徴探索と融合ネットワーク

多層特徴探索と融合ネットワークを用いたMRIにおけるIDH状態予測研究 研究背景 膠芽腫は成人における最も一般的な悪性原発性脳腫瘍です。2021年の世界保健機関(WHO)の腫瘍分類によると、腫瘍のサブタイプの区分には遺伝子型が重要な意味を持ち、とりわけイソクエン酸脱水素酵素(IDH)遺伝子型は膠芽腫の診断に極めて重要です。臨床研究は、IDH変異を持つ膠芽腫が特定の表現型遺伝子変異特性を通じて酵素活性、細胞代謝および生物特性に影響を与えることを示しています。IDH変異を持つ膠芽腫は、IDH野生型のものよりもテモゾロミドに対して感受性が高く、予後が良好です。現在、IDH状態の認定は主に侵襲的手術後に組織標本を用いた遺伝子シーケンシングまたは免疫組織化学分析に依存しています。しかし、侵襲的な操作は...

ダイナミックコントラスト増強磁気共鳴画像における薬物動態パラメータの正規化フローに基づく分布推定

在現代医療診断および臨床研究において、動的コントラスト強調磁気共鳴画像(Dynamic Contrast-Enhanced Magnetic Resonance Imaging, DCE-MRI)技術は、組織病理学に関する重要な情報を提供します。トレーサーキネティック(Tracer-Kinetic, TK)モデルをフィットさせることにより、時間系列MRI信号から薬物動態学(Pharmacokinetic, PK)パラメーターを抽出できます。しかし、これらの推定されたPKパラメーターは、信号対雑音比(Signal-to-Noise Ratio, SNR)、バックグラウンドT1時間、開始時間、動脈入力機能(Arterial Input Function, AIF)、およびフィットアルゴリズムなど...

3D MRI の分類のためのシャム輸送ドメイン適応フレームワーク: グリオーマおよびアルツハイマー病

Siamese-Transport領域適応フレームワークに基づく3D MRIによる膠芽腫およびアルツハイマー病の分類 研究背景 コンピュータ支援診断において、3D磁気共鳴画像法(MRI)によるスクリーニングは早期診断に重要な役割を果たし、さまざまな脳疾患の悪化を防止するのに有効です。膠芽腫は一般的な悪性脳腫瘍で、その治療法は腫瘍のグレードによって異なります。そのため、正確で効率的な3D MRI分類は医用画像分析において極めて重要です。しかし、従来の深層学習モデルは臨床における未ラベルデータに適用された場合、異なる装置やデータ収集パラメータの違いによる領域間不一致性のため、性能が著しく低下します。既存の方法は主に領域間の差異を減少させることに焦点を当てていますが、セマンティック特徴と領域情報の...