高グレード胃腸膵腫瘍の包括的ゲノムおよびトランスクリプトーム特性評価

高グレード胃腸膵腫瘍の包括的ゲノムおよびトランスクリプトーム特性評価

高度胃腸膵神経内分泌腫瘍の総合的な遺伝子および転写組特性の研究報告 研究の背景 高度胃腸膵神経内分泌腫瘍(high-grade gastro-entero-pancreatic neuroendocrine neoplasms, HG GEP-NENs)は、神経内分泌分化の特徴を持つ異質性のある悪性腫瘍である。WHO 2019 [1]および2022 [2]基準によると、GEP-NENsは現在、神経内分泌腫瘍(NETs)、神経内分泌癌(NECs)、および混合型非神経内分泌-神経内分泌腫瘍の三種類に分類されている。国際臨床ガイドライン[3, 4]では、GEP-NET G3とGEP-NECsを包括的な概念としてHG GEP-NENsとして認めているが、GEP-NET G3とGEP-NECsの予後お...

大規模な米国前向きコホートにおける屋外大気汚染と成人血液学的がんサブタイプの発生リスク

米国における大規模な前向きコホート研究が屋外空気汚染と成人の血液系癌サブタイプとの潜在的な関連性を明らかにする 研究の背景および目的 近年、屋外空気汚染が人間の健康に与える影響は広範な関心を集めています。国際がん研究機関(IARC)は2013年から屋外空気汚染と細かい粒子物質(PM)をグループ1のヒト発癌物質に分類しており、主に肺癌研究からの証拠によります。現在の研究データは空気汚染と血液癌との間に何らかの関連を示唆していますが、血液癌の病理学的異質性のため、これらの研究は癌のサブタイプの詳細な区別を無視する傾向にあり、関連する結論は明確で一貫していないことが多いです。様々な血液癌サブタイプ間の関係をより深く理解するために、本研究は米国がん協会のがん予防研究II栄養コホート(American...

低級グリオーマ患者の全生存率予測のための有用な特徴の調査

低グレードグリオーマ患者の全生存率予測における有用な特徴の研究 学術的背景 グリオーマは脳内の腫瘍性成長であり、患者の生命を深刻に脅かすことが多い。大多数の場合、グリオーマは最終的に患者の死をもたらす。グリオーマの分析は通常、顕微鏡下で脳組織の病理切片を観察することを伴う。脳組織病理画像には患者の全生存率(OS, Overall Survival)を予測する大きな潜力があるが、脳組織病理の独特性により、これらの画像が唯一の予測因子として使用されることは稀である。病理画像を用いて早期のグリオーマ患者の全生存率を予測することは、治療と生活の質に重要な価値を持つ。この研究では、著者たちは深層学習モデルと簡単な記述データ(年齢やグリオーマの亜型など)を組み合わせて、低グレードグリオーマ(LGG, l...

マルチタスク学習を通じた小児低悪性度神経膠腫の分割の改善

小児低グレード膠芽腫の分割のためのマルチタスク学習の改善 背景紹介 小児脳腫瘍の分割は、腫瘍容量分析および人工知能アルゴリズムの主要なタスクである。しかし、このプロセスは時間がかかり、神経放射線学の専門家の知識が必要です。多くの研究が成人の脳腫瘍分割の最適化に集中していますが、人工知能主導の小児腫瘍分割に関する研究はまれです。さらに、小児と成人の脳腫瘍のMRI信号特徴は異なるため、小児脳腫瘍のための特別な分割アルゴリズムが必要です。したがって、本論文は、脳腫瘍の遺伝子変化分類器を主要ネットワークに補助タスクとして追加し、マルチタスク学習(Deep Multitask Learning, DMTL)を通じて分割結果の精度を向上させることを提案します。 論文出典 この研究は以下の研究者によって行...

多変数磁気共鳴画像を使用した腫瘍内および腫瘍周囲の放射線機能による膠芽腫のグレード予測

《多パラメータMRI画像による腫瘍内外のラジオミクス特徴に基づく膠芽腫のグレード予測》 研究背景 膠芽腫は中枢神経系で最も一般的な原発性脳腫瘍であり、成人の悪性脳腫瘍の80%を占めます。臨床実践では、治療の決定は通常、腫瘍のグレードに基づいて個別に調整されます。世界保健機関(WHO)は膠芽腫を4つのグレード(I-IV)に分類し、さらに低グレード膠芽腫(LGG、I級とII級)と高グレード膠芽腫(HGG、III級とIV級)に分けています。正確な膠芽腫のグレード分類は、治療計画の立案、個別治療の実施、予後および生存期間の予測において極めて重要です。現在、膠芽腫のグレード診断は主に外科的生検や組織病理学的分析によって行われています。しかし、この診断法は侵襲的であり、場合によっては患者に適さないため、...

自己注意の類似性に導かれたグラフ畳み込みネットワークによる多種類の低グレードの神経膠腫分類研究

自己注意の類似性に導かれたグラフ畳み込みネットワークによる多種類の低グレードの神経膠腫分類研究

自己注意類似性に導かれたグラフ畳み込みネットワークを用いた多タイプ低グレード膠芽腫の分類 一、研究の背景 低グレード膠芽腫は一般的な悪性脳腫瘍であり、脳および脊髄のグリア細胞の癌化に起因します。膠芽腫は発症率が高く、再発率が高く、死亡率が高く、治癒率が低いという特徴があります。多タイプ低グレード膠芽腫を正確に分類することは、患者の予後において非常に重要です。診断において、医師は通常、磁気共鳴画像法(MRI)やコンピュータ断層撮影(CT)を用いて膠芽腫細胞の異クエン酸脱水素酵素(IDH)変異状態を分析します。 IDH変異状態は、野生型と変異型膠芽腫を区別する重要な指標です。従来は、生検や手術によって免疫組織化学や遺伝子シーケンシングを行い、IDH変異状態を特定していました。生検には一定のリスク...

スライスプールを基にしたAI駆動型ラジオミクスアルゴリズムによるグリオーマグレーディング

スライスプールを基にしたAI駆動型ラジオミクスアルゴリズムによるグリオーマグレーディング

AI補助のスライスプーリングに基づくグリオーマグレーディングのラジオミクスアルゴリズム 背景紹介 グリオーマ(Glioma)は中枢神経系で最も一般的かつ脅威的な腫瘍であり、高発病率、高再発率、高死亡率、低治癒率を持ちます。世界保健機関(WHO)はグリオーマを四段階(I、II、III、IV)に分類し、そのうちI級とII級は低度グリオーマ(LGG)、III級とIV級は高度グリオーマ(HGG)と呼ばれます。高度グリオーマはより侵襲性のある悪性腫瘍で、予期寿命は約2年です。2016年にWHOは分子タイプ分けを導入し、感受性の低い治療を排除できるようになりましたが、グリオーマのグレーディングは依然として治療方針の選定において重要な診断基準となっています。 磁気共鳴画像法(MRI)は、グリオーマの検出と...

グリオーマ疾患予測:最適化されたアンサンブル機械学習アプローチ

最適化統合機械学習による膠芽腫の予測 論文背景と研究目的 医学研究において、膠芽腫(gliomas)は最も一般的な原発性脳腫瘍であり、異なる臨床行動と治療結果を持つ多様な癌のタイプがあります。膠芽腫患者の予後を正確に予測することは、治療計画の最適化と個別化された患者ケアにとって極めて重要です。大規模なゲノムおよび臨床情報の広範な利用可能性に伴い、機械学習手法は信頼性のある膠芽腫予測モデルを作成する上で大きな可能性を示しています。本研究における膠芽腫予測モデルは、複数の機械学習アルゴリズム(KStarおよびSMOReg)を統合することで、膠芽腫予測の精度と効率を向上させ、個別化医療および患者予後の改善に寄与することを目的としています。 論文出典 この論文はJatin Thakur、Chahil...

知識蒸留に基づく軽量化畳み込みニューラルネットワークによる非侵襲的な膠芽腫の分類

非侵入性胶質腫瘤の等級分類に関する研究概要:知識蒸留に基づく軽量な畳み込みニューラルネットワーク 背景紹介 膠質腫瘍は中枢神経系の主要な腫瘍であり、早期検出が非常に重要です。世界保健機関(WHO)は膠質腫瘍をⅠ級からⅣ級に分類しており、Ⅰ級とⅡ級は低級膠質腫瘍(LGG)、Ⅲ級とⅣ級は高級膠質腫瘍(HGG)です。膠質腫瘍を正確に分類することは生存率の評価にとって非常に重要です。 磁気共鳴画像法(MRI)は医学の分野で膠質腫瘍の診断と治療によく使用される方法です。現在、多くの研究者が機械学習や深層学習の方法で膠質腫瘍を分類しています。例えば、Zacharakiらはサポートベクターマシン(SVM)アルゴリズムをMRI画像に適用して膠質腫瘍を分類することに成功しました。一方、Fatemehらは畳み込...

ゲーム理論的解釈可能性を持つ多モーダル解きほぐされた変分オートエンコーダによる膠芽腫の分類

多模態解凍変分オートエンコーダとゲーム理論解釈性が膠質腫分類における応用 背景紹介 中枢神経系統で膠質腫は最も一般的な原発性脳腫瘍です。細胞活性と侵襲性に応じて、世界保健機関(WHO)はこれをIからIV級に分類しています。IおよびII級を低位膠質腫(LGG)、IIIおよびIV級を高位膠質腫(HGG)と呼びます。臨床実践において、治療決定は通常、腫瘍の異なる級に合わせて個別に調整する必要があります。そのため、正確な膠質腫分類は、治療決定、個別化治療、患者の予後予測にとって非常に重要です。現在、膠質腫分類のゴールドスタンダードは手術生検や組織病理学分析によって行われています。しかし、この方法は侵襲性があり、リアルタイム性を持っていないため、てんかん、感染症、さらには穿刺経路沿いの腫瘍転移によって...