負の決定論的情報に基づく多インスタンス学習を用いた弱教師付きの物体検出とセグメンテーション

負の決定論的情報に基づく多インスタンス学習を用いた弱教師付きの物体検出とセグメンテーション

ネガティブ決定論的情報に基づく多重インスタンス学習の弱監督物体検出とセグメンテーションへの応用 背景紹介 過去10年間において、コンピュータビジョン分野は特に物体検出(Object Detection)とセマンティックセグメンテーション(Semantic Segmentation)で顕著な進歩を遂げてきました。しかし、大部分のアルゴリズムとモデルは正確なアノテーションデータに大きく依存しており、実際の応用において大量の人力と時間を消費します。弱監督学習(Weakly Supervised Learning, WSL)は、粗粒度のアノテーションデータ(例:画像レベルのアノテーション)のみを必要とすることでこの問題を解決します。この背景から、弱監督物体検出(Weakly Supervised O...

ハイパースペクトルおよびマルチスペクトル画像融合の進展:情報認識トランスフォーマーに基づく展開ネットワーク

ハイパースペクトルおよびマルチスペクトル画像融合の進展:情報認識トランスフォーマーに基づく展開ネットワーク

情報認識に基づくTransformer展開ネットワークの高次元・多次元画像融合の促進 背景紹介 高次元画像(Hyperspectral Image, HSI)は、多くの波長帯のスペクトル情報を含むため、物質識別、画像分類、ターゲット検出、環境モニタリングなどのリモートセンシング用途で重要な役割を果たしています。しかし、センサーのハードウェアの制約により、実際のイメージングプロセスでは空間分解能とスペクトル分解能の間のトレードオフが存在します。具体的には、イメージングセンサーは豊富なスペクトル情報を提供する画像(低分解能のHSI、LR-HSI)か、空間分解能が高くスペクトル情報が少ない画像(高分解能の多次元画像、HR-MSI)のいずれかしか提供できません。高分解能のHSI(HR-HSI)を得る...

グラフ最適化問題のためのグラフニューラルネットワーク駆動ソルバーフレームワーク

グラフ最適化問題のためのグラフニューラルネットワーク駆動ソルバーフレームワーク

グラフニューラルネットワークに基づくグラフ最適化問題解決フレームワーク 背景と研究動機 制約充足問題(CSPs)および組み合わせ最適化問題(COPs)を解決する際、バックトラック法と分枝ヒューリスティックの組み合わせが一般的です。特定の問題に対して設計された分枝ヒューリスティックは理論上効率的ですが、その複雑さと実装の難しさのために実用化が制限されています。一方で、汎用的な分枝ヒューリスティックは適用範囲が広いものの、通常は最適性能を示しません。本稿の著者は、分枝ヒューリスティックにシャノンエントロピー(Shannon Entropy)を導入することで、汎用性と特定性のバランスを取る新しい解決フレームワークを提案しました。具体的には、グラフニューラルネットワーク(GNN)モデルを使用して、確...

代替セルフデュアル教育による弱教師ありセマンティックセグメンテーション

代替セルフデュアル教育による弱教師ありセマンティックセグメンテーション

代替二重教師自己調整学習による弱監督セマンティック画像分割実現 背景紹介 コンピュータビジョンの分野の発展に伴い、セマンティック分割はその中で重要かつ活発な研究方向の一つとなっています。従来のセマンティック分割方法は手動でラベリングされたピクセルレベルのラベルに依存していますが、これらの精密なアノテーションの取得には通常多大な人力と時間コストがかかります。この問題を解決するために、近年、弱監督セマンティック分割(Weakly Supervised Semantic Segmentation, WSSS)が提案され、これは人工アノテーションを最小限に抑えつつ、弱いアノテーション情報(画像ラベル、バウンディングボックス、塗りつぶしなど)を利用して効率的なセマンティック分割を実現することを目指して...

環境の不確実性を考慮した堅牢な多目的強化学習

背景紹介 近年、強化学習(Reinforcement Learning, RL)はさまざまな複雑なタスクの解決においてその有効性を示してきた。しかし、多くの現実世界の意思決定と制御の問題は、複数の相互に対立する目標を含む。これらの目標の相対的な重要性(選好)は、異なる状況でバランスを取る必要がある。パレート最適解(Pareto optimal)の解決策は理想的とされるが、環境の不確実性(例えば、環境の変化や観察ノイズ)は、エージェントが次善の戦略を取ることを引き起こす可能性がある。 この問題に対処するために、Xiangkun He、Jianye Haoなどは、《Robust Multiobjective Reinforcement Learning Considering Environme...

畳み込みカーネルの有効受容野の変更

GMConv:神経ネットワークの畳み込みカーネルの有効受容野の調整を実現 はじめに 畳み込みニューラルネットワーク(Convolutional Neural Networks、以下CNN)は、畳み込みカーネルの使用により画像分類や物体検出などのコンピュータービジョンタスクで顕著な成功を収めてきました。しかし、近年ではビジョントランスフォーマー(Vision Transformers、以下ViT)が注目を浴びており、これらは視覚認識タスクで優れた性能を発揮し、時にはCNNを超えることもあります。それにもかかわらず、CNNの改善に向けた取り組みは止まることなく、多くの研究が新しいCNNアーキテクチャの設計に取り組んでいます。特に大きな畳み込みカーネルを使用するCNNは、最新のViTに匹敵する性能...

樹状細胞を標的としたウイルス様粒子は強力なmRNAワクチンのキャリアとして機能します

樹状細胞を標的としたウイルス様粒子としての強力なmRNAワクチンキャリア 序論 ワクチン開発の分野では、特にmRNAワクチンが近年顕著な成果を収めています。ModernaやPfizer/BioNTechのCOVID-19向けmRNAワクチンは成功例となり、mRNAワクチンの発展を大きく推進しました。しかし、現行のmRNAワクチンは特定の細胞タイプ、特に抗原提示において非常に重要な樹状細胞(DC)に特異的に作用することはできません。樹狀細胞は主要な抗原提示細胞であり、T細胞の免疫反応と抗体反応を効果的に開始することができますが、現行のmRNAワクチン、例えばLNP(脂質ナノ粒子)などはこれらの細胞に特異的にmRNAを伝達することができません。さらに、HIVやHSVのようなウイルス感染、さらには...

言語間で共有された皮質発語表象によって駆動されるバイリンガル音声神経補綴

大脳皮質発話表現に基づくバイリンガル音声神経義肢 背景 神経義肢の発展の過程では、脳活動から言語をデコードする研究が単一言語のデコードに集中してきました。そのため、バイリンガルによる言語生成が異なる言語の独自または共有された皮質活動にどの程度依存するかはまだ不明です。本研究は、電皮質図(electrocorticography, ECoG)と深層学習および統計的自然言語モデルを組み合わせ、西スペイン語-英語バイリンガル患者の発話運動皮質活動を記録およびデコードし、二つの言語の文に変換します。この研究は、目標言語を手動で指定することなく発話デコードを実現するという実際の応用問題を解決することを目指しています。 言語失声症 (anarthria)、すなわち明瞭な発話能力の喪失は、脳卒中や筋萎縮性...

標的がん治療のための抗体を表示する細胞外小胞

標的がん治療のための抗体を表示する細胞外小胞

外部小胞を表示できる抗体のがん治療における応用 エクソソーム(Extracellular Vesicles, EVs)は、天然の輸送キャリアおよび生体シグナルの媒介体として、さまざまな組織における応用が広く研究されています。本研究では、研究者がEVsのこれらの特性を利用して、特定の抗体結合ドメイン(Fragment crystallizable, Fc)で装飾されたEVsを展示し、それをがんのターゲティング治療のモジュール化輸送システムとして利用しました。本論文は《Nature Biomedical Engineering》に掲載され、国際合作チームによって完了されました。チームにはKarolinska Institutet、Salahaddin University-Erbil、Unive...

光感受血管からの局所血行力学コントラストを検出することによる生物発光のイメージング

光感受血管からの局所血行力学コントラストを検出することによる生物発光のイメージング

学術ニュースレポート:新しいMRI技術が感光血管の局所血流動態を検出することで生物蛍光イメージングを実現 学術背景紹介 生物発光プローブは、生体内の生物医学関連プロセスや細胞ターゲットのモニタリングに広く使用されています。しかし、組織による可視光の吸収と散乱は、生物発光の検出深度と分解能を大きく制限します。特に脳内では、頭蓋骨による光子の阻害が短波長光の伝播を制限し、生物発光イメージング(Bioluminescence Imaging, BLI)のデータが浅い層のものに限られ、多くは二次元の投影であり、深さ情報に欠けています。 これらの制限を克服するために、研究者たちは光音響トモグラフィーや他の光散乱再構成に基づく方法を開発しましたが、これらの方法には先験知識と独立したイメージングモードの解...