双层交互感知的异构图神经网络用于药物包推荐

医学包推荐系统研究:基于双层次交互意识的异构图神经网络 随着电子健康记录(electronic health records, EHRs)在医疗领域中的广泛应用,如何从中挖掘潜在的、有价值的医学知识来支持临床决策,成为深度学习技术的重要研究方向之一。个性化医学包推荐是这一领域的重要任务之一,其目标是利用大量医疗记录帮助医生为每位患者选择更安全、有效的药物包。然而,现有的医学包推荐方法主要将任务建模为多标签分类或序列生成问题,主要关注的是个体药物与其他医学实体之间的关系,却普遍忽视了药物包与其他医学实体之间的交互,从而可能导致推荐的药物包不完整。此外,现有方法所考虑的医学常识知识相对有限,使得深入研究医生的决策过程变得非常困难。 来源概述 本文由山东大学软件学院的研究人员Fanglin Zhu...

基于知识增强图主题Transformer的可解释生物医学文本摘要

基于知识增强的图主题Transformer在可解释生物医学文本摘要中的应用 研究背景 由于生物医学文献发表量持续增加,自动生物医学文本摘要任务变得愈加重要。2021年,仅在PubMed数据库中就发表了1,767,637篇文章。现有的基于预训练语言模型(Pre-trained Language Models,简称PLMs)的摘要方法虽然提升了摘要性能,但在捕捉领域特定知识和结果可解释性方面存在显著局限。这可能导致生成的摘要缺乏连贯性,包括冗余句子或重要领域知识的遗漏。此外,变压器模型的黑箱特性使得用户难以理解摘要生成的原因和方式,因此在生物医学文本摘要中,包含领域特定知识和可解释性对提高准确性和透明度至关重要。 研究来源 本文的论文由Qianqian Xie、Prayag Tiwari(IEE...

结合多重先验知识的图神经网络用于多组学数据分析

结合多重先验知识的图神经网络用于多组学数据分析

医学多组学数据分析中的多重先验知识图神经网络 背景介绍 精确医学是未来医疗保健的重要领域,因为它为患者提供个性化的治疗方案,从而改善治疗效果并降低成本。例如,由于乳腺癌患者存在复杂的临床、病理和分子特征,相同的治疗可能表现出不同的效果。随着生物医学技术的高速发展,疾病的表征可以通过多组学数据来实现。多组学方法相较单组学方法能够在多个数据间捕捉一致和互补的信息,从而建立更加准确和深入的模型。例如,癌症基因组图谱(The Cancer Genome Atlas, TCGA)提供了包括mRNA表达、DNA甲基化和拷贝数变异(Copy Number Variation, CNV)在内的多组学数据。因此,在精确医学的各类任务中引入多组学数据变得必要,这些任务包括药物反应预测、基因发现和生存分析等。 作...

使用模型投影的联邦学习进行多中心疾病诊断

使用模型投影的联邦学习进行多中心疾病诊断

使用模型投影的联邦学习进行多中心疾病诊断 背景介绍 随着医学影像技术的快速发展,基于自动化诊断方法的研究在单中心数据集上表现出良好的性能。然而,这些方法在实际应用中往往难以泛化到其他医疗机构的数据。主要原因是这些方法通常假设不同医疗中心的数据是独立同分布(IID)的,而实际上不同中心由于使用不同的扫描仪和成像参数,导致数据分布非独立同分布(Non-IID)。此外,不同中心诊断的患者数量和种类也存在较大差异。因此,多中心的数据具有异质性,无法通过集中化学习(Centralized Learning)有效解决这一问题。 近年来,联邦学习(Federated Learning,FL)作为一种去中心化框架,为多中心协同训练全球模型提供了可能,同时还保留了各中心患者数据的隐私。然而,Non-IID数据...

利用电子健康记录特征识别未诊断的常见变异型免疫缺陷症患者

利用电子健康记录特征识别未诊断的常见变异型免疫缺陷症患者

利用电子健康记录特征识别未诊断的常见变异型免疫缺陷症患者 Johnson等人最近在 Science Translational Medicine 发表了一篇题为《Electronic health record signatures identify undiagnosed patients with common variable immunodeficiency disease》的研究论文。该研究通过电子健康记录(EHRs)和机器学习算法PheneT,识别未被诊断的普通变量免疫缺陷病(common variable immunodeficiency,CVID)的患者,为更早的诊断和治疗提供新途径。 研究背景和研究目的 人类先天性免疫缺陷(inborn errors of immunity...

StrokeClassifier:使用电子健康记录的集合共识模型进行缺血性脑卒中病因分类

StrokeClassifier:人工智能工具基于电子健康记录对缺血性卒中进行病因分类 项目背景及研究动机 脑卒中(尤其是急性缺血性卒中,AIS)的病因识别工作对二次预防至关重要,但诊断起来往往非常困难。在美国,每年的缺血性卒中新发病例近67.6万,其中四分之一的患者曾有过卒中史。这种病症的再发率较高,甚至可能导致死亡或进一步的残疾。缺血性卒中的病因可以多种多样,包括大动脉粥样硬化、心源栓塞、小血管病以及其他罕见病因。然而,美国大约20-30%的缺血性卒中患者在经过评估后,病因依然无法确定,被归类为隐源性卒中。这部分患者的再发卒中风险特别高。因此,能够准确识别隐源性卒中的病因,对于优化治疗方案、提高患者预后具有重要意义。然而,做出准确诊断需要整合大量的数据,包括临床史、体检结果、实验室数据、...

大语言模型利用电子健康记录中识别健康的社会决定因素

大语言模型利用电子健康记录中识别健康的社会决定因素 背景及研究动机 健康社会决定因素(Social Determinants of Health, SDOH)对患者的健康结果具有重要影响。然而,在电子健康记录(EHR)结构化数据中,这些因素的记录往往不完整或缺失。大语言模型(Large Language Models, LLMs)有望从EHR的叙述性文本中高通量提取SDOH,以支持研究和临床护理。然而,类别不平衡和数据限制为这种稀疏记录的关键信息带来了挑战。本文旨在探讨使用LLMs从EHR叙述性文本中提取六种SDOH类别(就业、住房、交通、父母身份、关系和社会支持)的最佳方法。 研究来源 这项研究由Harvard Medical School的Mass General Brigham人工智能...

使用病历预测现象广泛的疾病发生并支持对新兴健康威胁的快速响应

使用病历预测现象广泛的疾病发生并支持对新兴健康威胁的快速响应 研究背景和动机 新冠疫情暴露了全球系统性、数据驱动指导缺乏的问题,这对识别高风险人群以及应对疫情准备造成了严重影响。个体未来疾病风险评估对于指导预防干预、早期疾病检测和治疗启动至关重要。然而,对于常见疾病,只有一小部分有定制的风险评分,医疗提供者和个人对于大多数相关疾病缺乏指导。即便在有既定风险评分的情况下,对于使用哪种评分和相关的生理或实验室测量也缺乏共识,导致常规医疗实践高度碎片化。特别是在新冠疫情初期,由于缺乏可用数据,无法识别脆弱人群的风险评分不可用。 同时,大多数医学决策,包括诊断、治疗和预防疾病,都是基于个人的医学史。随着数字化的普及,这些信息已经被医疗提供者、保险公司和政府以电子健康记录的形式收集,但由于人类处理和理...

亲密护理产品与激素相关癌症的关联:定量偏倚分析

亲密护理产品与激素相关癌症的发病率 背景介绍 近年来,由于亲密护理产品可能含有潜在的内分泌干扰化学物质,例如邻苯二甲酸盐、对羟基苯甲酸酯和双酚类物质等,对其安全性的关注日益增加。这些化学物质可能会改变内源性激素水平,从而影响乳腺癌、卵巢癌或子宫癌等激素相关疾病的发病风险。此外,这些产品还可能含有其他已知或怀疑致癌物质,如挥发性有机化合物和石棉。 尽管已有研究证明使用生殖器滑石粉与卵巢癌之间存在关联,但由于回忆偏倚和暴露分类错误等问题,相关结论尚存争议。本研究旨在重新评估亲密护理产品使用与女性激素相关癌症的发病率之间的关系,并在数据中考虑了潜在的偏倚因素。 论文来源 本文的主要作者包括Katie M. O’Brien、Nicolas Wentzensen、Kemi Ogunsina、Clari...

在老年癌症患者中进行电子患者报告结局(ePROs)的可行性研究

多中心前瞻性研究:电子患者报告结局(ePROs)在老年癌症患者中的可行性 研究背景 近年来,远程医疗尤其是在COVID-19疫情期间发展迅速,并被认为可以弥补医疗人员短缺的问题。电子患者报告结果(ePROs)在癌症护理中已经被证实能够改善患者的整体生存期(OS)和生活质量。然而,针对75岁及以上老年癌症患者的远程ePRO监控的具体前瞻性数据却很少。这一群体在癌症患者总量中占有重要比例,因此研究其对ePRO的可行性成为亟待解决的问题。 欧洲医学肿瘤学会(European Society for Medical Oncology)关于PROs的指南也未提供针对75岁及以上患者的具体数据。此外,据世界卫生组织(WHO)预测,到2050年,80岁及以上老年人的数量将是2020年的三倍。因此,有必要探...