基于多参数MRI影像的脑胶质瘤分级预测方法的研究

《基于多参数MRI影像肿瘤内外放射组学特征预测胶质瘤等级》 研究背景 胶质瘤是中枢神经系统最常见的原发性脑肿瘤,占成年恶性脑肿瘤的80%。在临床实践中,治疗决策通常需要根据肿瘤的等级来进行个体化调整。世界卫生组织(WHO)将胶质瘤分为四个等级(I-IV),并将其进一步分类为低级别胶质瘤(LGG,I级和II级)和高级别胶质瘤(HGG,III级和IV级)。准确的胶质瘤分级对于制定治疗方案、实施个性化治疗以及预测预后和生存时间至关重要。目前,胶质瘤等级的诊断主要通过外科活检或组织病理学分析。然而,这种诊断方法具有侵入性且在某些情况下对患者不宜,因此急需一种非侵入性且高准确度的胶质瘤分级系统。 磁共振成像(MRI)已成为放射科医生在过去几年中诊断脑肿瘤的热门非侵入性手段。尽管有经验的放射科医生通过裸...

自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究

自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究

基于自注意力相似性引导的图卷积网络用于多类型低级别胶质瘤分类 一、研究背景 低级别胶质瘤是一种常见的恶性脑肿瘤,由大脑和脊髓中的胶质细胞癌变引起。胶质瘤具有发病率高、复发率高、死亡率高和治愈率低等特点。正确分类多类型低级别胶质瘤对患者的预后至关重要。在诊断上,医生通常利用磁共振成像(MRI)和计算机断层扫描(CT)分析胶质瘤细胞的异柠檬酸脱氢酶(IDH)突变状态。 IDH突变状态是区分野生型和突变型胶质瘤的重要标志。传统上需要通过活检或手术切除来进行免疫组织化学或基因测序,从而确定IDH突变状态。由于活检存在一定风险,因此开发无创预测IDH突变状态的计算机辅助诊断方法具有重要意义,可避免患者接受不必要的手术风险。 二、论文来源 该论文发表于IEEE生物医学与健康信息学期刊(IEEE Jour...

多模态解耦变分自编码器与博弈论解释用于胶质瘤分级

多模态解缠变分自编码器与博弈理论解释性在胶质瘤分级中的应用 背景介绍 在中枢神经系统中,胶质瘤是最常见的原发性脑肿瘤。根据细胞活动和侵袭性,世界卫生组织(WHO)将其分为I至IV级,其中I和II级称为低级别胶质瘤(LGG),III和IV级称为高级别胶质瘤(HGG)。在临床实践中,治疗决策通常需要针对不同的肿瘤级别进行个性化调整。因此,准确的胶质瘤分级对于治疗决策、个性化治疗以及患者预后的预测至关重要。目前,胶质瘤分级的金标准仍然是通过手术活检或组织病理学分析。然而,这种方法是侵入性的,并且不具有实时性,可能导致癫痫、感染甚至沿穿刺路线的肿瘤转移。因此,开发一种能够在术前无创且及时诊断胶质瘤级别的分级系统具有重要意义。 磁共振成像(MRI)广泛应用于胶质瘤患者的临床术前诊断、治疗决策和预后评估...

全自动多模态 MRI 基于多任务学习的胶质瘤分割和IDH 基因分型

全自动多模态 MRI 基于多任务学习的胶质瘤分割和IDH 基因分型

全自动多模态MRI多任务学习用于胶质瘤分割和IDH基因分型的研究报告 研究背景 胶质瘤是中枢神经系统中最常见的原发性脑肿瘤,根据世界卫生组织(WHO)2016年分类,胶质瘤分为低级别胶质瘤(LGG,级别II和III)和高级别胶质瘤(HGG,级别IV)。异柠檬酸脱氢酶(Isocitrate Dehydrogenase, IDH)突变状态是胶质瘤中最重要的预后标志之一。临床研究发现,含有IDH突变的低级别胶质瘤患者预后通常优于IDH野生型患者。传统的胶质瘤手工分割费时费力,而准确的IDH基因分型和精确的胶质瘤分割对于指导治疗和评估预后具有重要意义。由于多模态磁共振成像(Magnetic Resonance Imaging, MRI)的非侵入性和日常临床实践中的重要作用,它被认为是最有前途的候选技...

脑胶质瘤分割的上下文感知网络

脑胶质瘤分割的上下文感知网络

脑胶质瘤分割的上下文感知网络研究报告 脑胶质瘤是一种常见的成人脑肿瘤,它对健康有严重的损害,并且具有高死亡率。为了提供早期诊断、手术规划和术后观察的充分证据,多模态磁共振成像(MRI)已经广泛应用于该领域。本文研究的目的是在脑胶质瘤的自动化分割中纳入上下文信息,这在处理局部模糊性方面提供了基本线索。 研究背景 先前的研究表明,基于深度神经网络的方法在脑胶质瘤分割中显示了很有希望的技术。然而,这些方法缺乏强有力的策略来结合肿瘤细胞及其周围的上下文信息。已有的自动分割方法虽然提高了分割精度,但仍然存在局部模糊性问题,没有充分考虑肿瘤细胞与其周围环境的关系。 论文来源 该研究由Zhihua Liu, Lei Tong, Long Chen, Feixiang Zhou, Zheheng Jiang...

利用透明机器学习与解释性AI提升胶质瘤预后

胶质瘤预后的透明化机器学习和解释性洞察力应用于解释性人工智能的赋能 学术背景 本研究致力于开发一种可靠的技术,来通过多种机器学习方法及深度学习方法,结合解释性人工智能(XAI,Explainable Artificial Intelligence)技术检测患者是否患有特定类型的脑肿瘤——胶质瘤。胶质瘤(glioma)是起源于胶质细胞的中枢神经系统癌症的一种,具有快速生长和侵袭健康脑组织的特性,常见的治疗方法包括手术、放射治疗、化疗等。通过整合患者数据,包括医疗记录、遗传档案等,机器学习算法能够预测每个个体对不同医疗干预的反应。 论文来源 该论文由Anisha Palkar、Cifha Crecil Dias(IEEE高级会员)、Krishnaraj Chadaga和Niranjana Sam...

数据工程赋能的胶质瘤生存分析

脑胶质瘤患者的生存分析研究:数据工程赋能综述 引言 脑胶质瘤是一种在胶质细胞中发生的肿瘤,它们占全部原发性脑和中央神经系统肿瘤的26.7%。由于肿瘤异质性的存在,脑胶质瘤患者的生存分析成为了临床管理中的一个关键任务。在过去几十年里,研究者们提出了多种生存分析方法,结合不同类型的数据,如影像和遗传信息。尤其是近年来,机器学习技术和深度学习的兴起改变了传统的基于统计分析的生存分析方法。本文综述了利用诊断影像技术和基因组平台获得的预后参数,以及用于预后预测的技术、学习和统计分析算法,突出了现有生存预测研究的挑战,并提出了该领域研究的未来方向。 作者及出版信息 作者: Navodini Wijethilake (斯里兰卡莫拉图瓦大学计算机科学与工程系研究成员) 合著者: Dulani Meedeni...

基于贝叶斯推断的个体化胶质瘤生长预测

利用贝叶斯推断进行个性化预测胶质瘤生长 引言 胶质母细胞瘤(glioblastoma)是最具侵袭性的原发性脑肿瘤,肿瘤细胞会高度侵袭周围组织。通过标准医学成像技术无法准确识别这些弥漫性肿瘤边界,导致临床干预效果不佳且预后较差。由于此类挑战,依靠医学图像进行肿瘤空间和时空发育的可靠计算预测能够提供更多信息,有助于医生为每个个体设计最佳治疗方案。 近年来,多个关于肿瘤生长的生物物理模型通过非侵入性成像测量数据进行了开发和校准,旨在预测未来的肿瘤生长和治疗结果。然而,要实现预测肿瘤发展,必须解决两个关键挑战:一是需要量化模型预测中的不确定性,以改善个体治疗效果;二是需要表征肿瘤和宿主组织的空间异质性,这会对治疗的设计产生显著影响。 研究背景和动机 本研究的核心动机在于通过引入贝叶斯框架来解决上述两...

嵌入TiO2-Au-MXene的矩形开放通道用于脑肿瘤诊断的PCF生物传感器的数值分析

数值分析嵌入TiO2-Au-MXene的矩形开放通道PCF生物传感器用于脑肿瘤诊断 学术背景与问题陈述 近年来,具有成本效益和高可靠性的生物传感器的开发成为一个研究热点。这些传感器旨在检测分析物的微小浓度,种类繁多,涵盖了各种技术,用于监测和检测细胞和液体。光子晶体(photonic crystals, PHCs)和PHC纤维(photonic crystal fibers, PCFs)因其紧凑尺寸、电磁干扰抵抗性、对分析物需求量少、结构设计灵活且易于集成等优点,迅速占据了传感器技术的热门选择。 特别值得注意的是,基于表面等离子体共振(surface plasmon resonance, SPR)的光纤生物传感器表现出色。SPR现象通过光纤和贵金属相结合,可以剧增检测灵敏度,尤其在生物医学领...

聚焦超声介导的大容量药物输送

比较声波模式和微泡给药策略在聚焦超声介导的血脑屏障大体积药物传递中的应用 背景介绍 弥漫性固有桥脑胶质瘤(Diffuse Intrinsic Pontine Glioma,DIPG)是儿童中最常见且最致命的脑干肿瘤。由于DIPG的血脑屏障(Blood-Brain Barrier,BBB)通常保持完整,致使药物无法有效穿透,这为治疗增加了巨大挑战。近年来,聚焦超声结合微泡介导的BBB打开(FUS-BBBO)技术显示出打破这一障碍的巨大潜力。考虑到DIPG的高扩散性,需要能够覆盖整个肿瘤区域的大体积FUS-BBBO治疗策略。本文的研究目标是确定一种能够在脑干部位实现高效且均匀的大体积BBBO的最优治疗策略,以实现免疫检查点抑制剂(如抗PD-L1抗体)在脑干部位的有效传递。 研究来源 该研究由Ya...