GDF1缓解由听力损失引起的认知功能障碍

听力损失诱导认知障碍的改善 背景介绍 阿尔茨海默病(Alzheimer’s Disease, AD)是一种常见的痴呆症,其病理特征包括由淀粉样β(Amyloid β, Aβ)聚集形成的细胞外老人斑和由聚集tau蛋白形成的细胞内神经纤维缠结。流行病学研究表明,听力损失与痴呆症的发生密切相关,并且其风险显著增加。然而,关于听力损失如何促进AD发生的分子机制尚不明确。基于此,本研究旨在探讨听力损失与认知障碍之间的关系,并探索潜在的治疗靶点。 研究来源 本文《GDF1 Ameliorates Cognitive Impairment Induced by Hearing Loss》发表于《Nature Aging》2024年4月,由武汉大学人民医院神经内科、武汉大学中南医院神经内科、华中科技大学同济...

使用脑脊液生物标志物模型对阿尔茨海默病进行病程阶段划分

研究背景与目的 随着全球超过5000万人受认知障碍病症影响,预计这一数字到2050年将翻倍。阿尔茨海默病(AD)是最常见的痴呆形式,其特征是脑部形成淀粉样β(Aβ)胞外斑块和tau蛋白内部聚集。过去二十年间,AD领域聚焦于使用生物标志物来支持诊断和预断,而不单靠临床症状。本研究旨在利用脑脊液(CSF)生物标志物构建一个对AD进行分期的稳健生物学模型。 研究来源 本研究由Gemma Salvadó等多位学者完成,他们来自于多个国家和地区的多个研究机构,例如瑞典隆德大学、华盛顿大学医学院和荷兰阿姆斯特丹VU大学医学中心等。该研究成果发表于2024年5月的《Nature Aging》杂志上。 研究设计与方法 本研究包括426名来自Biofinder-2项目和222名来自Knight阿尔茨海默病研究...

血浆蛋白组特征预测健康成人未来的痴呆症

血浆蛋白组特征预测健康成人未来的痴呆症

Plasma蛋白质谱预测健康成人未来痴呆症的可能性 研究背景及意义 痴呆症的预测一直是医学界的一大挑战。随着蛋白质组学的发展,血液中的生物标志物为预测痴呆的发生带来了新的机遇。本研究主要基于英国生物银行中52,645位未患痴呆的成人与跟踪时间14.1年的数据,考察了1,463种血浆蛋白与各类痴呆症发生之间的关系。研究发现GFAP、NEFL、GDF15和LTBP2是与事件发生高度相关的生物标记物。该研究对于未来人群痴呆风险筛选和早期干预具有重要指导意义。 研究来源 本研究由Yu Guo、Jia You、Yi Zhang、Wei-Shi Liu、Yu-Yuan Huang、Ya-Ru Zhang、Wei Zhang、Qiang Dong、Jian-Feng Feng、Wei Cheng与Jin-...

基于多参数MRI影像的脑胶质瘤分级预测方法的研究

《基于多参数MRI影像肿瘤内外放射组学特征预测胶质瘤等级》 研究背景 胶质瘤是中枢神经系统最常见的原发性脑肿瘤,占成年恶性脑肿瘤的80%。在临床实践中,治疗决策通常需要根据肿瘤的等级来进行个体化调整。世界卫生组织(WHO)将胶质瘤分为四个等级(I-IV),并将其进一步分类为低级别胶质瘤(LGG,I级和II级)和高级别胶质瘤(HGG,III级和IV级)。准确的胶质瘤分级对于制定治疗方案、实施个性化治疗以及预测预后和生存时间至关重要。目前,胶质瘤等级的诊断主要通过外科活检或组织病理学分析。然而,这种诊断方法具有侵入性且在某些情况下对患者不宜,因此急需一种非侵入性且高准确度的胶质瘤分级系统。 磁共振成像(MRI)已成为放射科医生在过去几年中诊断脑肿瘤的热门非侵入性手段。尽管有经验的放射科医生通过裸...

自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究

自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究

基于自注意力相似性引导的图卷积网络用于多类型低级别胶质瘤分类 一、研究背景 低级别胶质瘤是一种常见的恶性脑肿瘤,由大脑和脊髓中的胶质细胞癌变引起。胶质瘤具有发病率高、复发率高、死亡率高和治愈率低等特点。正确分类多类型低级别胶质瘤对患者的预后至关重要。在诊断上,医生通常利用磁共振成像(MRI)和计算机断层扫描(CT)分析胶质瘤细胞的异柠檬酸脱氢酶(IDH)突变状态。 IDH突变状态是区分野生型和突变型胶质瘤的重要标志。传统上需要通过活检或手术切除来进行免疫组织化学或基因测序,从而确定IDH突变状态。由于活检存在一定风险,因此开发无创预测IDH突变状态的计算机辅助诊断方法具有重要意义,可避免患者接受不必要的手术风险。 二、论文来源 该论文发表于IEEE生物医学与健康信息学期刊(IEEE Jour...

多模态解耦变分自编码器与博弈论解释用于胶质瘤分级

多模态解缠变分自编码器与博弈理论解释性在胶质瘤分级中的应用 背景介绍 在中枢神经系统中,胶质瘤是最常见的原发性脑肿瘤。根据细胞活动和侵袭性,世界卫生组织(WHO)将其分为I至IV级,其中I和II级称为低级别胶质瘤(LGG),III和IV级称为高级别胶质瘤(HGG)。在临床实践中,治疗决策通常需要针对不同的肿瘤级别进行个性化调整。因此,准确的胶质瘤分级对于治疗决策、个性化治疗以及患者预后的预测至关重要。目前,胶质瘤分级的金标准仍然是通过手术活检或组织病理学分析。然而,这种方法是侵入性的,并且不具有实时性,可能导致癫痫、感染甚至沿穿刺路线的肿瘤转移。因此,开发一种能够在术前无创且及时诊断胶质瘤级别的分级系统具有重要意义。 磁共振成像(MRI)广泛应用于胶质瘤患者的临床术前诊断、治疗决策和预后评估...

全自动多模态 MRI 基于多任务学习的胶质瘤分割和IDH 基因分型

全自动多模态 MRI 基于多任务学习的胶质瘤分割和IDH 基因分型

全自动多模态MRI多任务学习用于胶质瘤分割和IDH基因分型的研究报告 研究背景 胶质瘤是中枢神经系统中最常见的原发性脑肿瘤,根据世界卫生组织(WHO)2016年分类,胶质瘤分为低级别胶质瘤(LGG,级别II和III)和高级别胶质瘤(HGG,级别IV)。异柠檬酸脱氢酶(Isocitrate Dehydrogenase, IDH)突变状态是胶质瘤中最重要的预后标志之一。临床研究发现,含有IDH突变的低级别胶质瘤患者预后通常优于IDH野生型患者。传统的胶质瘤手工分割费时费力,而准确的IDH基因分型和精确的胶质瘤分割对于指导治疗和评估预后具有重要意义。由于多模态磁共振成像(Magnetic Resonance Imaging, MRI)的非侵入性和日常临床实践中的重要作用,它被认为是最有前途的候选技...

脑胶质瘤分割的上下文感知网络

脑胶质瘤分割的上下文感知网络

脑胶质瘤分割的上下文感知网络研究报告 脑胶质瘤是一种常见的成人脑肿瘤,它对健康有严重的损害,并且具有高死亡率。为了提供早期诊断、手术规划和术后观察的充分证据,多模态磁共振成像(MRI)已经广泛应用于该领域。本文研究的目的是在脑胶质瘤的自动化分割中纳入上下文信息,这在处理局部模糊性方面提供了基本线索。 研究背景 先前的研究表明,基于深度神经网络的方法在脑胶质瘤分割中显示了很有希望的技术。然而,这些方法缺乏强有力的策略来结合肿瘤细胞及其周围的上下文信息。已有的自动分割方法虽然提高了分割精度,但仍然存在局部模糊性问题,没有充分考虑肿瘤细胞与其周围环境的关系。 论文来源 该研究由Zhihua Liu, Lei Tong, Long Chen, Feixiang Zhou, Zheheng Jiang...

利用透明机器学习与解释性AI提升胶质瘤预后

胶质瘤预后的透明化机器学习和解释性洞察力应用于解释性人工智能的赋能 学术背景 本研究致力于开发一种可靠的技术,来通过多种机器学习方法及深度学习方法,结合解释性人工智能(XAI,Explainable Artificial Intelligence)技术检测患者是否患有特定类型的脑肿瘤——胶质瘤。胶质瘤(glioma)是起源于胶质细胞的中枢神经系统癌症的一种,具有快速生长和侵袭健康脑组织的特性,常见的治疗方法包括手术、放射治疗、化疗等。通过整合患者数据,包括医疗记录、遗传档案等,机器学习算法能够预测每个个体对不同医疗干预的反应。 论文来源 该论文由Anisha Palkar、Cifha Crecil Dias(IEEE高级会员)、Krishnaraj Chadaga和Niranjana Sam...

数据工程赋能的胶质瘤生存分析

脑胶质瘤患者的生存分析研究:数据工程赋能综述 引言 脑胶质瘤是一种在胶质细胞中发生的肿瘤,它们占全部原发性脑和中央神经系统肿瘤的26.7%。由于肿瘤异质性的存在,脑胶质瘤患者的生存分析成为了临床管理中的一个关键任务。在过去几十年里,研究者们提出了多种生存分析方法,结合不同类型的数据,如影像和遗传信息。尤其是近年来,机器学习技术和深度学习的兴起改变了传统的基于统计分析的生存分析方法。本文综述了利用诊断影像技术和基因组平台获得的预后参数,以及用于预后预测的技术、学习和统计分析算法,突出了现有生存预测研究的挑战,并提出了该领域研究的未来方向。 作者及出版信息 作者: Navodini Wijethilake (斯里兰卡莫拉图瓦大学计算机科学与工程系研究成员) 合著者: Dulani Meedeni...