Functional Graphene Fiber Materials for Advanced Wearable Applications

Academic Background With the rapid development of wearable electronic devices, the demand for high-performance, flexible, and durable materials has been increasing. Graphene, as a two-dimensional material with excellent electrical conductivity, mechanical strength, and flexibility, has garnered significant attention in recent years for its applicat...

A Time-Scheduled Oxygen Modulation System Facilitates Bone Regeneration by Powering Periosteal Stem Cells

Academic Background During tissue repair, chronic hypoxia negatively impacts the functionality of stem cells. Periosteal Stem Cells (PSCs), as the primary contributors to bone repair, exhibit unclear behavior under hypoxic conditions. While hypoxia may be beneficial for certain stem cells in the early stages of tissue repair, prolonged hypoxia can ...

Advances in Nanofiber Cathodes for Aluminum-Ion Batteries

Advances in Nanofiber Cathodes for Aluminum-Ion Batteries Academic Background With the growing global demand for sustainable energy solutions, the development of energy storage systems has become a focal point of research. Lithium-ion batteries (LIBs) dominate the market due to their high energy density and cycle stability. However, challenges such...

A Portable Device Utilizing High-Entropy Perovskite Aerogels for Efficient Energy Conversion from Atmospheric Water

Academic Background The global scarcity of water and energy resources is particularly severe in arid and remote regions, and this issue has become even more urgent in the context of intensifying climate change. Traditional methods of water and energy acquisition, such as seawater desalination or large-scale power transmission, are not only costly a...

Durable Fe3O4/PPY Particle Flow Spun Textile for Electromagnetic Interference Shielding and Joule Heating

Academic Background With the widespread use of electronic devices, the negative impacts of electromagnetic interference (EMI) on human health and device lifespan have become increasingly significant. Traditional metal-based electromagnetic shielding materials, while highly conductive, suffer from rigidity and poor processability, making them unsuit...

A Portable, Sprayable, Highly Malleable, Elastic, and Hydrophobic Antibacterial Fibrous Wound Dressing for Infected Wound Healing

Academic Background Wound infection is a significant concern for patients and healthcare professionals worldwide, particularly in the management of severe wounds. Inappropriate dressings can increase the risk of infection, prolong healing time, and even lead to higher mortality rates and economic burdens. Traditional wound dressings, such as gauze ...

Pressure Sensors Based on Densely Structured Graphene Fibers for Motion Monitoring

Academic Background With the rapid development of smart wearable devices, pressure sensors, as core components, have garnered extensive attention in fields such as health monitoring, human-machine interaction, and artificial intelligence. Based on their sensing principles, pressure sensors are primarily categorized into capacitive, piezoelectric, t...

Optimizing Oxygen Reduction Reaction through Enhanced Mesoscopic Mass Transport in Ordered Mesoporous Carbon Nanofibers

Academic Background As the global demand for green energy continues to grow, fuel cells and metal-air batteries are considered potential solutions for energy conversion and storage due to their high energy density. However, the commercialization of these technologies is hindered by the slow kinetics of the oxygen reduction reaction (ORR) at the cat...

Ordered Solid Solution γ′-Fe4N-Based Absorber Synthesized by Nitridation Engineering and Applied for Electromagnetic Functional Devices

Academic Background With the advancement of industrial upgrading and disciplinary integration, significant progress has been made in the informatization, intelligence, and automation of human society. However, this has also raised higher demands for new materials, especially in the field of electromagnetic functional materials. The increasingly sev...

Skin-Inspired Zero Carbon Heat-Moisture Management Based on Shape Memory Smart Fabric

Academic Background With the continuous increase in global greenhouse gas emissions, environmental temperatures are rising, posing potential threats to human health and productivity due to extreme weather conditions. Especially in summer, the widespread use of cooling devices such as air conditioners and electric fans has led to a sharp increase in...