靶向线粒体的双金属纳米酶通过清除活性氧和减轻炎症缓解神经性疼痛

靶向线粒体的双金属簇纳米酶通过清除ROS和减少炎症缓解神经病理性疼痛 背景介绍 神经病理性疼痛是一种复杂且多方面的大众健康问题,其高发病率及对患者生活质量的显著负面影响使其成为医学研究的重要领域。当前,针对神经病理性疼痛的治疗方案存在局限性,包括疗效不足以及药物副作用明显等问题。这种情况促使科学家们不断探索新的治疗靶点和方法,以改进管理慢性疼痛的手段。 神经病理性疼痛的形成机制复杂多样,激活的脊髓胶质细胞以及微环境中炎症介质和活性氧(Reactive Oxygen Species, ROS)的积累,是主要的致病因素之一。研究表明,中心神经系统(CNS)中ROS的生成会激活如核因子κB(NF-κB)等转录因子,导致促炎性细胞因子及趋化因子的表达,从而在神经元中维持和扩展疼痛感知。此外,线粒体功...

假新闻云中的一线希望:大型语言模型能否帮助检测虚假信息?

大型语言模型如何应对虚假信息?——基于LLMs的深度研究 在当今信息传播速度飞快的数字时代,虚假信息(misinformation)和假新闻(fake news)的传播已成为社会的重大挑战。互联网和社交媒体的普及使得信息共享的门槛大幅降低,任何人都可以在未经验证的情况下传播内容,而社交平台的算法又倾向于优先展示争议性或引发强烈情绪的内容,从而加速了误导性信息的扩散。此外,随着生成式人工智能(generative artificial intelligence)的发展,特别是大型语言模型(Large Language Models, LLMs)的普及,这些模型不仅可以生成高质量的自然语言,还可能被用于伪造信息,使得传统的虚假信息检测方法难以应对。 在此背景下,《Silver Lining in...

一种基于部门的股权配对交易策略与新型配对选择技术

深入探索基于部门的对冲交易策略及创新选股技术 背景与研究目标 对冲交易策略(Pairs Trading Strategy, PTS)作为一种长期以来被广泛使用的金融套利策略,其核心思想是利用两只高度相关的股票之间的相对表现,从价格的暂时性偏差中获利。然而,传统对冲交易策略主要依赖均值回复理论,假设股票之间的价格差(价差,Spread)会回归到其历史平均值。在实际操作中,交易者通常通过相关性分析或协整性分析(Cointegration)来挑选股对(Stock Pairs),并依据统计模型生成长/短头寸信号,从而实现获利。 尽管传统PTS已被广泛应用,但它存在一些局限性。例如,传统PTS在股对选择时通常忽略了股票所属行业(Sector)或部门的特征,这可能导致选出的股对对行业波动或市场系统性风险...

基于多目标进化优化的移民重新安置问题研究

通过多目标进化优化解决移民安置问题的新框架研究报告 在全球化进程加速和不断变化的社会经济背景下,移民(migrants)现象已经成为一种不可忽视的全球趋势。不管是出于人道主义救助的角度,还是从全球化经济的可持续发展出发,有效地管理和安置移民已成为一个复杂的重要课题。据统计,截止2019年,国际移民的总数已达到2.72亿人,呈现出大幅超出先前预测的增长趋势,并且这一现象在未来还将持续。然而,与此同时,移民安置过程中也面临着诸多挑战:如何提升移民的就业率以及如何合理分配移民至合适的定居点?这些问题的答案对移民本身、对东道国、乃至整个社会的经济与文化福祉都有重要影响。 基于这一全球性问题,本研究由南京大学、Peng Cheng实验室及Southern University of Science a...

混合环境中基于关系图学习的强化学习多智能体协作导航

多智能体混合环境协作导航研究:基于关系图学习的强化学习新方法 移动机器人技术正随着人工智能领域的发展迎来应用热潮,其中导航能力是移动机器人研究的核心热点之一。传统导航方法在面对动态环境、障碍物规避以及多机器人协作任务时,往往面临算法复杂度、计算资源消耗以及模型普适性的问题。针对这些问题,来自Central South University与Zhejiang University of Technology的研究团队提出了一种基于关系图注意力网络(Graph Attention Network, GAT)的新方法,称为GAR-CoNav,为混合环境中的多目标协作导航问题(Multi-Robot Cooperative Navigation Problem, MCNP)提供了新的解决方案。这篇发...

基于深度递归强化学习和联邦学习的工业物联网流量入侵检测方法

基于深度循环强化学习和联邦学习的工业物联网流量入侵检测方法 学术背景 工业物联网(Industrial Internet of Things, IIoT)的快速发展带来了智能工业系统的巨大变革,IIoT通过互联网连接各种工业设备,实现了设备间的数据交换、远程控制以及智能决策。然而,这种无缝连接和庞大的设备网络也使得工业系统面临日益复杂和多样化的网络安全威胁。在实际IIoT场景中,网络攻击可能导致数据泄漏、数据操纵、拒绝服务(denial of service, DoS)、以及工厂生产中断等严重后果。传统的入侵检测方法虽然对部分攻击类型表现出了一定的检测能力,但由于其大多采用传统的机器学习模型在集中服务器上训练,无法很好地处理分布式设备所带来的隐私、能耗以及异质性数据分布问题。 为了应对这些挑...

自适应复合固定时间强化学习优化的非线性系统控制及其在智能船舶自动驾驶上的应用

智能船舶自动驾驶的非线性固定时间强化学习优化控制研究 近年来,智能自动驾驶技术逐渐成为自动化控制领域的研究热点之一。在复杂的非线性系统中,优化控制策略的设计,尤其是在固定时间内实现系统稳定性和性能优化方面,是控制工程师和研究人员面临的重要挑战之一。然而,现有的固定时间控制理论在实现系统状态收敛时,往往忽略了资源利用效率和平衡问题,这可能导致过度补偿或欠补偿的现象,从而使系统的稳态误差增加。此外,对于如何在时间限定内实现非线性不确定性估计误差的最小化,相关研究依然较少。因此,本研究旨在提出一种自适应复合固定时间强化学习优化控制解决方案,进一步解决这一关键问题。 研究背景及目的 固定时间控制理论自提出以来,由于收敛时间不依赖于初始状态的特点,其应用得到了广泛关注。相比有限时间控制方法,固定时间控...

基于偏好预测的多目标演化优化在汽油调和调度中的应用

基于偏好预测的进化式多目标优化用于汽油调和调度 背景介绍 随着全球能源市场的不断变化,汽油的生产和调和工艺面临着越来越多的挑战。汽油作为石油工业的重要产品,其调和和调度过程直接影响产品的质量和生产效率。汽油调和需要根据产品规格和性能要求,将多种组分按不同比例混合,以生产不同等级的汽油。在此过程中,必须满足多项性能指标,例如辛烷值(Octane Number, ON)、里德蒸气压(Reid Vapor Pressure, RVP)、铅含量、硫含量及闪点等。这不仅要求严格的质量控制,还需符合日益严苛的环保法规。 汽油调和和调度本质上是一个多目标优化问题。此类问题具有多个相互冲突的目标,例如提高产品质量、最大化生产效率、减少设备占用率、以及尽量降低生产成本。此外,这一问题还涉及复杂的约束条件和非线...

meMIA:多级集成成员推理攻击

深入解析科研论文:MEMIA: Multilevel Ensemble Membership Inference Attack 科研背景介绍 随着数字技术的迅猛发展,人工智能(AI)和机器学习(ML)已经深入渗透到医疗、金融、零售、教育以及社交媒体等多个领域。然而,随着这些技术的广泛应用,隐私泄露的风险也愈发凸显。许多研究表明,机器学习模型容易受到对抗性攻击的威胁,其中一种重要的隐私攻击形式是会员推断攻击(Membership Inference Attack, MIA)。这种攻击的核心目的是通过分析目标模型的输出预测分布,推测某一特定数据样本是否被用于模型的训练。然而,目前已有的MIA方法面临诸多限制,尤其是在数据集类别较少或目标模型欠拟合的场景下,其攻击精度通常会显著下降。因此,如何提升...

RD-Net:通过视神经头的结构特征预测青光眼的残差-密集网络

使用残差密集网络 (RD-Net) 进行基于视神经头结构特征的青光眼预测 背景与研究目的 青光眼是全球范围内导致失明的主要原因之一,被称为“视力的无声窃贼”。其主要特征是视神经(Optic Nerve Head, ONH)的进行性损伤,可能在患者察觉到其视力受损之前已经造成不可逆转的视觉丧失。据统计,青光眼是继白内障之后的第二大致盲原因。早期对青光眼的筛查与准确诊断,对管理疾病进展及维持患者的视觉功能至关重要。 临床上,青光眼的诊断主要基于以下结构和功能性测试:眼内压(Intraocular Pressure, IOP)测量、视神经头的结构评估,以及视野检测。然而,视野检测通常需要昂贵的设备,难以普及到基层医疗机构。因此,通过分析视神经头的结构特征,例如杯盘比(Cup-to-Disc Rat...