利用基于扩散模型的深度学习算法增强超结构成像与体积电子显微镜
利用基于扩散模型的深度学习算法增强超结构成像与体积电子显微镜 背景介绍 电子显微镜(Electron Microscopy,简称EM)作为一种高分辨率成像工具,对细胞生物学取得了重大突破。传统的EM技术主要用于二维成像,尽管已经揭示了复杂的纳米级别细胞结构,但在研究三维(3D)结构时存在一定局限性。体积电子显微镜(Volume Electron Microscopy,简称VEM)作为一种更为先进的技术,通过串联切片和断层扫描技术(如透射电子显微镜TEM和扫描电子显微镜SEM)实现了细胞和组织的3D成像,可以提取细胞、组织甚至小模型生物体的纳米级3D结构。 尽管VEM技术突破了传统二维EM的局限性,但其成像速度和质量之间存在固有的权衡关系,导致成像区域和体积的限制。此外,生成各向同性(isot...