能够显示细胞外囊泡的抗体,有助于靶向癌症治疗

能够显示细胞外囊泡的抗体,有助于靶向癌症治疗

能够显示细胞外囊泡的抗体在靶向癌症治疗中的应用 外泌体(Extracellular Vesicles, EVs)作为天然的递送载体和生物信号的介导体在各类组织中的应用已有广泛研究。在本篇研究中,研究者借助EVs的这些特性,展示了一种装饰有特定抗体结合域(Fragment crystallizable,Fc)的EVs,其作为癌症靶向治疗的模块化递送系统。本文发表于《Nature Biomedical Engineering》,由一支国际合作团队完成,包括Oscar P. B. Wiklander, Doste R. Mamand, Dara K. Mohammad等人,他们分别来自Karolinska Institutet、Salahaddin University-Erbil以及Univer...

通过检测光敏血管的局部血流动力学来实现生物荧光成像

通过检测光敏血管的局部血流动力学来实现生物荧光成像

学术新闻报道:新的MRI技术通过检测光敏血管的局部血流动力学来实现生物荧光成像 学术背景介绍 生物发光探针广泛应用于监测活体动物中生物医学相关的过程和细胞目标。然而,组织对可见光的吸收和散射极大地限制了生物发光检测的深度和分辨率。特别是在大脑中,由于颅骨对光子的阻挡,短波长光的传播受到限制,导致生物发光成像(Bioluminescence Imaging, BLI)的数据通常限制于浅层来源,并且大多是二维投影,缺乏深度信息。 为了克服这些限制,研究人员开发了光声层析成像和其他基于光散射重建的方法,但这些方法需先验知识和独立成像模式的解剖信息的注册。另一种方法是将生物发光输出局部转换为不同类型的信号,以便使用X射线层析成像、超声波或磁共振成像(MRI)等深度组织成像方式进行检测。尽管已经有一些...

亚细胞分辨率的空间多组学高通量原位成对测序

亚细胞分辨率的空间多组学高通量原位成对测序

亚细胞分辨率的空间多组学高通量原位成对测序 研究背景和目的 随着生物医学研究的不断发展,多组学技术在细胞功能和疾病机制方面的应用越来越受到关注。然而,目前,许多原位测序方法仅限于解读一种生物分子类型的空间信息,同时多种生物分子(如DNA、RNA、蛋白质和小分子)原位共检测仍然面临挑战。此外,由于4n(4代表四种荧光染料,n代表测序或杂交轮数)解码能力的限制,高通量空间组学在成本和检测效率方面仍需改进。为了解决这些问题,本文报道了一种新型的高通量靶向原位测序方法——多组学原位配对测序(MIP-Seq),该方法能够高效检测大脑组织中多种生物分子,在分子和功能图谱的多维分析上提供了新的可能性。 论文来源 该研究由来自华中农业大学的Xiaofeng Wu, Weize Xu, Lulu Deng等人...

StrokeClassifier:使用电子健康记录的集合共识模型进行缺血性脑卒中病因分类

StrokeClassifier:人工智能工具基于电子健康记录对缺血性卒中进行病因分类 项目背景及研究动机 脑卒中(尤其是急性缺血性卒中,AIS)的病因识别工作对二次预防至关重要,但诊断起来往往非常困难。在美国,每年的缺血性卒中新发病例近67.6万,其中四分之一的患者曾有过卒中史。这种病症的再发率较高,甚至可能导致死亡或进一步的残疾。缺血性卒中的病因可以多种多样,包括大动脉粥样硬化、心源栓塞、小血管病以及其他罕见病因。然而,美国大约20-30%的缺血性卒中患者在经过评估后,病因依然无法确定,被归类为隐源性卒中。这部分患者的再发卒中风险特别高。因此,能够准确识别隐源性卒中的病因,对于优化治疗方案、提高患者预后具有重要意义。然而,做出准确诊断需要整合大量的数据,包括临床史、体检结果、实验室数据、...

自监督学习加速度计数据揭示睡眠与死亡率关联的新见解

自监督学习加速度计数据揭示睡眠与死亡率关联的新见解

自监督学习手腕加速度计数据揭示睡眠与死亡率关联的新见解 在现代社会中,睡眠作为生命必需的基础活动,其重要性不言而喻。通过准确测量和分类睡眠/清醒状态以及不同的睡眠阶段,在临床研究中对睡眠障碍的诊断以及解读消费者设备所提供的运动和心理健康数据都是至关重要的。然而现有的非多导睡眠图(Polysomnography, PSG)睡眠分类技术主要依赖于启发式方法,这些方法常常是在相对较小的样本人群中开发的,存在一定的局限性。因此,本研究的目标是通过腕戴加速度计确定睡眠阶段分类的准确性,并探讨睡眠时长和效率与死亡率之间的关联。 研究背景 由Hang Yuan及其团队(包括Tatiana Plekhanova, Rosemary Walmsley, Amy C. Reynolds, Kathleen J....

基于心电图的机器学习算法在全人群水平进行心血管疾病的诊断和验证

基于心电图的大规模心血管诊断机器学习算法的开发与验证 引言 心血管疾病(Cardiovascular diseases,CV)一直是全球范围内疾病负担的主要来源,早期诊断和干预对降低疾病并发症、医疗使用率和费用至关重要。传统的心电图(Electrocardiogram,ECG)作为一种低成本且便捷的诊断工具,广泛应用于心血管疾病的检测。然而,现有的ECG解释技术(包括人工和计算机算法)在识别高层次信号互动及“隐藏”的临床相关模式方面存在局限。人工智能(Artificial Intelligence,AI)尤其是深度学习(Deep Learning,DL)的出现,提供了识别ECG信号中“隐藏”模式并同时评估多种心血管疾病的复杂互动关系的全新契机。本研究正是基于这一背景展开。 论文来源与作者 本...

深度学习脓毒症预测模型对护理质量和患者生存情况的影响

深度学习败血症预测模型对护理质量和患者生存情况的影响 研究背景 败血症是一种感染引起的全身性炎症反应,全球每年大约有4800万人受到影响,其中约1100万人因此死亡。由于败血症的异质性,早期识别通常面临巨大挑战。早期干预包括液体复苏、抗生素管理和感染源控制等治疗措施在疾病早期阶段的效果显著。因此,通过预测分析提升败血症的早期检测具有重要意义。 研究来源 该研究由Aaron Boussina、Supreeth P. Shashikumar、Atul Malhotra、Robert L. Owens、Robert El-Kareh、Christopher A. Longhurst、Kimberly Quintero、Allison Donahue、Theodore C. Chan、Shamim ...

大语言模型利用电子健康记录中识别健康的社会决定因素

大语言模型利用电子健康记录中识别健康的社会决定因素 背景及研究动机 健康社会决定因素(Social Determinants of Health, SDOH)对患者的健康结果具有重要影响。然而,在电子健康记录(EHR)结构化数据中,这些因素的记录往往不完整或缺失。大语言模型(Large Language Models, LLMs)有望从EHR的叙述性文本中高通量提取SDOH,以支持研究和临床护理。然而,类别不平衡和数据限制为这种稀疏记录的关键信息带来了挑战。本文旨在探讨使用LLMs从EHR叙述性文本中提取六种SDOH类别(就业、住房、交通、父母身份、关系和社会支持)的最佳方法。 研究来源 这项研究由Harvard Medical School的Mass General Brigham人工智能...

阿尔茨海默病的临床病理异质性及其神经胶质激活模式

阿尔茨海默病的临床病理异质性及其胶质细胞激活模式 学术背景 阿尔茨海默病(Alzheimer Disease, AD)作为老年痴呆症的主要原因,其病理异质性一直是研究的热点。已有研究表明,阿尔茨海默病的临床症状存在多样性,包括健忘型和非健忘型临床症状,这都与神经纤维缠结的分布及胶质细胞激活密切相关。然而,这些异质性及其病理机制尚未完全阐明,因此进一步解析阿尔茨海默病的分子和细胞生物学机制,对于推动临床诊断和治疗至关重要。 研究背景与目的 此次研究由Neuroscience Department of Mayo Clinic Florida等多家学术机构联合进行,旨在深入剖析阿尔茨海默病的临床病理异质性和胶质细胞激活模式。研究团队通过对1991年至2020年间在Florida Autopsie...

MRI 引导的分阶段聚焦超声丘双侧 脑底核切除术治疗帕金森病

MRI 引导的分阶段聚焦超声丘双侧 脑底核切除术治疗帕金森病 背景简介 帕金森病(Parkinson’s Disease, PD)是一种常见的神经退行性疾病,主要表现为运动症状如震颤、僵硬和运动迟缓。传统上,针对该病的治疗方法包括药物治疗和外科手术,而后者如深部脑刺激术(Deep Brain Stimulation, DBS)和放射频率外科手术也在不断发展。然而,单侧MRI引导下的聚焦超声丘脑底核切开术(FUS-STN)被证明可以改善患有不对称性帕金森病患者的对侧运动特征,目前尚未探讨双侧FUS-STN的可行性。单侧治疗可能无法提供全局的症状控制,尤其是疾病进行中未治疗的身体半侧可能出现运动恶化和轴性表现,如步态障碍。为此,本研究旨在评估分阶段双侧FUS-STN治疗帕金森病的安全性和有效性。...