Transcriptome Dynamics and Cell Dialogs Between Oocytes and Granulosa Cells in Mouse Follicle Development

Transcriptome Dynamics and Cell Dialogue Between Oocytes and Granulosa Cells During Mouse Follicle Development Overview Follicle development and maturation is a complex, multi-stage process. During this process, dynamic gene expression in oocytes and surrounding somatic cells, as well as the dialogue between them, play crucial roles. This study rev...

Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis

Comprehensive Characterization and Transcriptome Analysis of Terminal Erythropoiesis in Human Fetal Liver Background and Research Question Erythropoiesis is the process of red blood cell production. Initially, “primitive” erythropoiesis occurs in the yolk sac, gradually replaced by “terminal” erythropoiesis in the fetal liver (FL) and postnatal bon...

A Telomere-to-Telomere Complete Diploid Genome Assembly for Han Chinese

T2T-YAO: Assembly of a Han Chinese Full-length Diploid Reference Genome Scientific Background Since the launch of the Human Genome Project (HGP) thirty years ago, the field of biomedical research has set a long-term goal of constructing a complete and accurate human reference genome. However, due to limitations in sequencing technology, it has long...

TM7SF3 Controls TEAD1 Splicing to Prevent MASH-Induced Liver Fibrosis

Background Introduction In modern society, metabolic dysfunction-associated steatotic liver disease (MASLD, previously NAFLD) is a common and serious chronic liver disease. However, the current understanding of its pathological mechanisms is not complete, including its progression to metabolic dysfunction-associated steatohepatitis (MASH), liver fi...

QDPR Deficiency Drives Immune Suppression in Pancreatic Cancer

Background Pancreatic Ductal Adenocarcinoma (PDAC) is a malignancy with a highly immunosuppressive tumor microenvironment (TME), showing strong resistance to immune checkpoint blockade (ICB) therapies, such as anti-PD-1 and anti-CTLA-4 treatments. Myeloid-Derived Suppressor Cells (MDSCs) derived from tumors play a critical role in tumor immune supp...

Short-Term Cold Exposure Induces Persistent Epigenomic Memory in Brown Fat

Short-term Cold Exposure Induces Persistent Epigenomic Memory in Brown Adipose Tissue Background Brown Adipose Tissue (BAT) is the primary non-shivering thermogenic organ in mammals that dissipates chemical energy as heat under cold stimuli. BAT is characterized by a high density of mitochondria containing Uncoupling Protein 1 (UCP1), which generat...

A Microbial Metabolite Inhibits the HIF-2α-Ceramide Pathway to Mediate the Beneficial Effects of Time-Restricted Feeding on MASH

A Microbial Metabolite Mediates the Beneficial Effects of Time-Restricted Feeding on MASH by Inhibiting the HIF-2A-Ceramide Pathway Introduction Background: Metabolic Dysfunction-Associated Steatotic Liver Disease/Metabolic Dysfunction-Associated Steatohepatitis (MASLD/MASH) is a major health problem affecting a quarter of the global population. MA...

Electron Transport Chain Inhibition Increases Cellular Dependence on Purine Transport and Salvage

Inhibition of the electron transport chain increases cell dependence on purine transport and salvage Research Background The electron transport chain (ETC) is a key mechanism in mitochondria responsible for energy generation, playing an important role in maintaining cellular homeostasis and growth. However, it remains unclear how cells adjust their...

Oncogenic Fatty Acid Oxidation Senses Circadian Disruption in Sleep-Deficiency-Enhanced Tumorigenesis

Fatty Acid Oxidation in Lung Cancer Patients Induced by Sleep Loss Promotes Tumorigenesis Through Circadian Rhythm Disruption Background and Research Motivation Circadian rhythm regulation is one of the critical mechanisms for animals to maintain physiological homeostasis. However, disruptions in circadian rhythms have become a common phenomenon du...

Gut Microbial Alterations in Arginine Metabolism Determine Bone Mechanical Adaptation

The Role of Gut Microbial Changes in Lysine Metabolism on Bone Mechanical Adaptation Research Background Osteoporosis, a severe global public health issue, affects over 200 million people, posing significant threats to health and life. Studies have shown that maintaining bone health and preventing osteoporosis are closely linked to mechanical load....