GDF1 Ameliorates Cognitive Impairment Induced by Hearing Loss

Improvement of Cognitive Impairment Induced by Hearing Loss Background Alzheimer’s Disease (AD) is a common dementia characterized by extracellular amyloid plaques formed by aggregation of amyloid-β (Aβ) and intracellular neurofibrillary tangles formed by aggregated tau protein. Epidemiological studies indicate a close correlation between hearing l...

Disease Staging of Alzheimer's Disease Using a CSF-Based Biomarker Model

Research Background and Objectives With over 50 million people worldwide affected by cognitive impairment disorders, this number is expected to double by 2050. Alzheimer’s disease (AD) is the most common form of dementia, characterized by extracellular amyloid-beta (Aβ) plaques and intracellular tau protein aggregates in the brain. Over the past tw...

Plasma Proteomic Profiles Predict Future Dementia in Healthy Adults

Plasma Proteomic Profiles Predict Future Dementia in Healthy Adults

Plasma Proteomics Predicts the Future Risk of Dementia in Healthy Adults Background and Significance Predicting dementia has always been a significant challenge in the medical field. With the development of proteomics, biomarkers in the blood offer new opportunities for predicting the onset of dementia. This study focuses on data from the UK Bioban...

Prediction of Glioma Grade Using Intratumoral and Peritumoral Radiomic Features from Multiparametric MRI Images

“Prediction of Glioma Grades Based on Radiomic Features Inside and Outside Tumors Using Multiparametric MRI Images” Research Background Glioma is the most common primary brain tumor in the central nervous system, accounting for 80% of adult malignant brain tumors. In clinical practice, treatment decisions often require individualized adjustments ba...

Self-Attention Similarity Guided Graph Convolutional Network for Multi-type Lower-Grade Glioma Classification Research

Self-Attention Similarity Guided Graph Convolutional Network for Multi-type Lower-Grade Glioma Classification Research

Graph Convolutional Network Based on Self-Attention Similarity for Multi-type Low-Grade Glioma Classification 1. Research Background Low-grade glioma is a common malignant brain tumor caused by the cancerous transformation of glial cells in the brain and spinal cord. Gliomas are characterized by high incidence, high recurrence rate, high mortality ...

Multimodal Disentangled Variational Autoencoder with Game Theoretic Interpretability for Glioma Grading

Application of Multi-modal Disentangled Variational Autoencoder and Game Theory Interpretability in Glioma Grading Background Gliomas are the most common primary brain tumors in the central nervous system. According to cellular activity and invasiveness, the World Health Organization (WHO) classifies them into grades I to IV, with grades I and II r...

A Fully Automated Multimodal MRI-Based Multi-task Learning for Glioma Segmentation and IDH Genotyping

A Fully Automated Multimodal MRI-Based Multi-task Learning for Glioma Segmentation and IDH Genotyping

Research Report on Fully Automated Multimodal MRI Multi-task Learning for Glioma Segmentation and IDH Gene Typing Background of the Study Glioma is the most common primary brain tumor in the central nervous system. According to the World Health Organization (WHO) 2016 classification, gliomas are divided into low-grade gliomas (LGG, grades II and II...

CaNet: Context Aware Network for Brain Glioma Segmentation

CaNet: Context Aware Network for Brain Glioma Segmentation

Context-Aware Network Study Report for Glioma Segmentation Glioma is a common type of adult brain tumor that severely harms health and has a high mortality rate. To provide sufficient evidence for early diagnosis, surgical planning, and postoperative observation, multimodal Magnetic Resonance Imaging (MRI) has been widely applied in this field. The...

Empowering Glioma Prognosis with Transparent Machine Learning and Interpretative Insights Using Explainable AI

Enabling Explainable Artificial Intelligence for Glioma Prognosis: Translational Insights from Transparent Machine Learning Academic Background This study is dedicated to developing a reliable technique to detect whether patients have a specific type of brain tumor—glioma—using various machine learning methods and deep learning methods, combined wi...

Glioma Survival Analysis Empowered with Data Engineering—A Survey

Survival Analysis of Glioblastoma Patients: An Overview Empowered by Data Engineering Introduction Glioblastoma is a type of tumor that occurs in glial cells and accounts for 26.7% of all primary brain and central nervous system tumors. Survival analysis of glioblastoma patients is a key task in clinical management due to the heterogeneity of the t...