DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG

DeepSleepNet: An Automatic Sleep Stage Scoring Model Based on Single-Channel EEG Background Introduction Sleep has a significant impact on human health, and monitoring sleep quality is crucial in medical research and practice. Typically, sleep experts score sleep stages by analyzing various physiological signals such as electroencephalogram (EEG), ...

Immersive Virtual Reality for the Cognitive Rehabilitation of Stroke Survivors

Immersive Virtual Reality for the Cognitive Rehabilitation of Stroke Survivors

In recent years, Virtual Reality (VR) technology has become increasingly common, with related hardware becoming more affordable. For example, current head-mounted displays (HMDs) on the market not only offer high-resolution displays but also feature precise head and handheld controller tracking. Initially, these technologies were mostly used in the...

Multi-view Spatial-Temporal Graph Convolutional Networks with Domain Generalization for Sleep Stage Classification

Sleep stage classification is crucial for sleep quality assessment and disease diagnosis. However, existing classification methods still face numerous challenges in handling the spatial and temporal features of time-varying multi-channel brain signals, coping with individual differences in biological signals, and model interpretability. Traditional...

Multi-task Heterogeneous Ensemble Learning-based Cross-subject EEG Classification in Stroke Patients

Multi-task Heterogeneous Ensemble Learning-based Cross-subject EEG Classification in Stroke Patients

Background Introduction Motor Imagery (MI) refers to performing activities through imagination without actual muscle movement. This paradigm is widely used in Brain-Computer Interface (BCI) to decode brain activities into control commands for external devices. Specifically, Electroencephalography (EEG) is widely used in BCI due to its relative affo...

Physics-Informed Deep Learning for Musculoskeletal Modeling: Predicting Muscle Forces and Joint Kinematics from Surface EMG

Musculoskeletal models have been widely used in biomechanical analysis because they can estimate motion variables that are difficult to measure directly in living organisms, such as muscle forces and joint moments. Traditional physics-driven computational musculoskeletal models can explain the dynamic interactions between neural inputs to muscles, ...

Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding

Brain-Computer Interface (BCI) is a communication method that connects the nervous system to the external environment. Motor Imagery (MI) is the cornerstone of BCI research, referring to the internal rehearsal before physical execution. Non-invasive techniques such as Electroencephalography (EEG) can record neural activities with high temporal reso...

An Attention-Based Deep Learning Approach for Sleep Stage Classification with Single-Channel EEG

The IEEE “Transactions on Neural Systems and Rehabilitation Engineering” published a paper titled “Sleep Stage Classification Using Attention-Based Deep Learning for Single-Channel EEG” in Volume 29, 2021. The author of the article include Emadeldeen Edele, Zhenghua Chen, Chengyu Liu, Min Wu, Chee-Keong Kwoh, Xiaoli Li, and Cuntai Guan. The main go...

Feasibility, Safety, and Performance of Full-Head Subscalp EEG Using Minimally Invasive Electrode Implantation

Feasibility, Safety, and Performance of Full-Scalp Subdural EEG - A Report on Minimally Invasive Electrode Implantation Background and Purpose Since Berger first recorded human scalp electrical signals and discovered the alpha rhythm in 1929, the recording capabilities of electroencephalography (EEG) have significantly improved in terms of spatial ...

Method for Localizing the Seizure Onset Zone in Refractory Epilepsy Patients

In recent years, refractory epilepsy has received increasing attention from the medical community. Refractory epilepsy is defined as the continuing occurrence of severe seizures despite treatment with two appropriate antiepileptic drugs. For patients who are unresponsive to drug treatment, if the seizure onset zone (SOZ) can be accurately localized...

Metagenomic Next-Generation Sequencing, instead of Procalcitonin, Could Guide Antibiotic Usage in Patients with Febrile Acute Necrotizing Pancreatitis: A Multicenter, Prospective Cohort Study

Metagenomic Next-Generation Sequencing as an Alternative to Procalcitonin in Guiding Antibiotic Use in Patients with Acute Necrotizing Pancreatitis and Fever Background and Research Objectives Acute pancreatitis (AP) is one of the leading causes of emergency hospital admissions for digestive system diseases, with significant medical resource utiliz...