DeepSleepNet: 基于原始单通道EEG的自动睡眠分期模型

深度睡眠网络:基于单通道EEG的自动睡眠阶段评分模型 背景介绍 睡眠对于人体健康具有重要影响,监测人们的睡眠质量在医学研究和实践中至关重要。通常,睡眠专家通过分析多种生理信号(如脑电图 (EEG)、眼动电图 (EOG)、肌电图 (EMG) 和心电图 (ECG))进行睡眠阶段评分。这些信号被称为多导睡眠图 (Polysomnogram, PSG),经分类后用于确定个体的睡眠状态。然而,这种手动方法耗时且费力,需要专家持续数夜对多个传感器进行记录并分析。 基于多信号(如EEG、EOG和EMG)或单信号EEG的自动睡眠阶段评分方法已得到广泛研究。然而,大多数现有方法依赖于手工特征提取,这通常根据数据集的特性进行设计,无法推广到具有异质性的更大人群中。此外,较少方法考虑了用于识别睡眠阶段转换规则的时...

沉浸式虚拟现实在中风幸存者认知康复中的应用

沉浸式虚拟现实在中风幸存者认知康复中的应用

近年来,虚拟现实技术(Virtual Reality, VR)逐渐变得更加普及,其相关硬件设备的价格也更加亲民。例如,现在市面上的头戴式显示器(Head Mounted Displays, HMDs)不仅提供高分辨率的显示,还具有精准的头部和手持控制器的跟踪功能。这些技术最初多用于娱乐行业,但越来越多的应用领域开始使用这项技术开展严肃游戏(Serious Games),特别是在创伤性事件后的康复领域,其中包括中风患者。 背景与目的 中风是指脑部血液供应被切断或脑内及脑周围出血导致脑细胞损伤的情况。根据受损脑区的不同,中风可能会引发不同的症状,例如一侧身体的无力(半侧麻痹)、视觉障碍以及失语症(Aphasia)等。值得注意的是,中风后认知功能障碍(Post-Stroke Cognitive I...

利用可解释人工智能进行脑肿瘤检测和分类的视觉Transformer、集成模型以及迁移学习

由于脑肿瘤的高发病率和致命性,快速且准确地检测和分类脑肿瘤变得尤为重要。脑肿瘤包括恶性和非恶性两种类型,其异常生长会对大脑造成长期损害。磁共振成像(MRI)是一种常用的脑肿瘤检测方法。然而,依赖于专家手工分析 MRI 影像存在结果不一致的风险,同时仅仅识别肿瘤是不够的,快速确定肿瘤类型以尽早开始治疗同样重要。 为了提高肿瘤检测的速度、可靠性和公正性,本研究探索了多种深度学习(Deep Learning, DL)架构,包括 VGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2 和 Xception,并提出了基于最佳三种传递学习(Transfer Learning, TL)模型的新模型 IVX16。本文的多类分类模型旨在解决当前主要集中在二分类问题...

多视角时空图卷积网络与域泛化在睡眠阶段分类中的应用

睡眠阶段分类在睡眠质量评估和疾病诊断中至关重要。然而,现有的分类方法在处理时间延变的多通道脑信号的空间和时间特征、应对个体生物信号差异以及模型的可解释性方面仍然面临诸多挑战。传统的机器学习方法依赖于复杂的特征工程,而深度学习方法尽管在特征表示学习上表现出色,但在空间-时间特征利用、跨个体泛化能力以及模型可解释性方面仍有待提升。 为了应对上述挑战,北京交通大学的Ziyu Jia等人以及麻省理工学院的Li-Wei H. Lehman提出了一种多视角时空图卷积网络(Multi-View Spatial-Temporal Graph Convolutional Networks, MSTGCN),并结合域泛化用于睡眠阶段分类。 论文来源 这篇论文由北京交通大学计算机与信息技术学院的Ziyu Jia,...

基于多任务异构集成学习的跨学科EEG分类在中风患者中的应用

基于多任务异构集成学习的跨学科EEG分类在中风患者中的应用

背景介绍 运动意象(Motor Imagery, MI)指的是通过想象的方式进行活动而无需实际肌肉运动。这一范式在脑机接口(Brain-Computer Interface, BCI)中得到了广泛应用,用于将大脑活动解码为外部设备的控制指令。特别是,脑电图(Electroencephalography, EEG)因其相对廉价、移动方便且时间分辨率高于其他神经影像工具而广泛用于BCI。此外,这一范式可以帮助中风患者进行神经康复。据研究,机器人辅助的脑机接口训练可以提升中风患者的运动康复效果(参见论文[5]和[6])。这是因为在MI期间激活的神经通路与实际运动执行(Motor Execution, ME)的神经通路相似,因此,通过想象这种方式也可能促使感知运动区域的神经通路激活,从而帮助中风后的...

评估胶质瘤生长模型在肿瘤切除后低级别胶质瘤中的预测价值

评估低级别胶质瘤术后生长模型预测价值的研究综述 引言 胶质瘤是一种侵袭性脑肿瘤,其细胞在脑内快速扩散。理解和预测这种扩散的模式和速度可以帮助优化治疗方案。基于扩散-增殖模型的胶质瘤生长模型已经展示出可行性,但在实际临床数据中应用和评估这些模型仍有挑战。为了改进对此问题的评估,本研究提出将肿瘤生长问题视为排序问题,并使用平均精度(Average Precision, AP)作为指标。这一方法无需特定的体积阈值,能够更准确地评估空间模式。 研究来源 该论文由Karin A. van Garderen、Sebastian R. van der Voort、Maarten M. J. Wijnenga等人撰写,作者来自荷兰鹿特丹伊拉斯姆斯医学中心的放射学和核医学、神经外科、病理和神经学等部门。论文发...

具有注意力机制的时间依赖学习卷积神经网络在运动想象脑电解码中的应用

MI-EEG解码中基于注意力机制的时间依赖学习卷积神经网络(CNN) 研究背景与问题描述 脑机接口(Brain-Computer Interface, BCI)系统提供了一种通过实时翻译大脑信号与计算机进行通信的新途径。近年来,BCI技术逐渐在为瘫痪患者提供辅助和预防性护理方面发挥了重要作用。现有的许多BCI系统依赖于非侵入性且相对便捷的脑电图(EEG)信号记录来追踪大脑活动。然而,即使在同一MI任务期间,不同时期产生不同MI相关模式的时间依赖性特性也往往被忽略,从而大大限制了MI-EEG解码性能。 论文来源与作者信息 论文《A Temporal Dependency Learning CNN with Attention Mechanism for MI-EEG Decoding》于202...

基于深度学习的实时视觉学习者识别模型

在如今的教育环境中,理解学生的学习风格对提高他们的学习效率至关重要。特别是视觉学习风格(visual learning style)的识别,有助于教师和学生在教学和学习过程中采取更有效的策略。目前,自动识别视觉学习风格主要依靠脑电图(Electroencephalogram, EEG)和机器学习技术。然而,这些技术通常需要离线处理来消除伪影和提取特征,从而限制了其在实时应用中的适用性。 这项由Soyiba Jawed、Ibrahima Faye和Aamir Saeed Malik在《IEEE Transactions on Neural Systems and Rehabilitation Engineering》上发表于2024年的研究,提出了一种基于深度学习技术的实时视觉学习者识别模型,...

经皮脊髓刺激恢复脊髓损伤后手臂和手功能

经皮脊髓刺激恢复脊髓损伤后手臂和手功能

脊髓损伤(Spinal Cord Injury, SCI)导致的上肢瘫痪大大影响了患者的独立性和生活质量。在SCI的患者群体中,恢复手部和臂部动作的控制被认为是最高优先级的治疗目标,这个需求远超于恢复行走能力。然而,目前改善上肢功能的临床方法并未能达到恢复独立生活的效果。传统的运动疗法和功能性电刺激(Functional Electrical Stimulation, FES)、体感刺激(Somatosensory Stimulation)以及经颅磁刺激(Transcranial Magnetic Stimulation, TMS)等方法在提升运动功能方面的效果较为有限。 近年的研究表明,通过电刺激技术可以激活受损部位下方的脊髓回路,从而恢复主动运动功能。特别是通过植入电极的脊髓电刺激技术展...

多特征注意力卷积神经网络用于运动想象解码

脑机接口(Brain-Computer Interface, BCI)是将神经系统与外部环境连接的一种通讯手段。运动想象(Motor Imagery, MI)是BCI研究的基石,它指在运动执行前的内在演练(Internal Rehearsal)。非侵入性技术如脑电图(Electroencephalography, EEG)因其成本效益高与便利性,可以高时间分辨率记录神经活动。当受试者想象移动身体特定部位时,大脑特定区域会发生能量变化(ERD/ERS),这些变化可以通过EEG记录并用于辨别运动意图。MI基础的BCI系统已经取得显著进展,能够控制外骨骼和光标,特别是与虚拟现实技术结合,用于中风康复的潜力更为显著。 目前,MI解码方法的高性能是这种系统成功的关键。然而,相比于依赖外部刺激的其它BC...